import pdb from pathlib import Path import sys import os import onnxruntime as ort PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() sys.path.insert(0, str(PROJECT_ROOT)) from parsing_api import onnx_inference import torch class Parsing: def __init__(self, model_root, device): providers = ['CPUExecutionProvider' ] if device == 'cpu' else ['CUDAExecutionProvider'] session_options = ort.SessionOptions() session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL self.session = ort.InferenceSession(os.path.join(model_root, 'humanparsing/parsing_atr.onnx'), sess_options=session_options, providers=providers) self.lip_session = ort.InferenceSession(os.path.join(model_root, 'humanparsing/parsing_lip.onnx'), sess_options=session_options, providers=providers) def __call__(self, input_image): # torch.cuda.set_device(self.gpu_id) parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) return parsed_image, face_mask