Spaces:
Running
on
Zero
Running
on
Zero
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# 3rd Edited by ControlNet | |
# 4th Edited by ControlNet (added face and correct hands) | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | |
import torch | |
import numpy as np | |
from . import util | |
from .wholebody import Wholebody | |
def draw_pose(pose, H, W): | |
bodies = pose['bodies'] | |
faces = pose['faces'] | |
hands = pose['hands'] | |
candidate = bodies['candidate'] | |
subset = bodies['subset'] | |
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) | |
canvas = util.draw_bodypose(canvas, candidate, subset) | |
canvas = util.draw_handpose(canvas, hands) | |
canvas = util.draw_facepose(canvas, faces) | |
return canvas | |
class DWposeDetector: | |
def __init__(self, model_root, device): | |
self.pose_estimation = Wholebody(model_root, device) | |
def __call__(self, oriImg): | |
oriImg = oriImg.copy() | |
H, W, C = oriImg.shape | |
with torch.no_grad(): | |
candidate, subset = self.pose_estimation(oriImg) | |
nums, keys, locs = candidate.shape | |
candidate[..., 0] /= float(W) | |
candidate[..., 1] /= float(H) | |
body = candidate[:,:18].copy() | |
body = body.reshape(nums*18, locs) | |
ori_score = subset[:,:18].copy() | |
score = subset[:,:18].copy() | |
for i in range(len(score)): | |
for j in range(len(score[i])): | |
if score[i][j] > 0.3: | |
score[i][j] = int(18*i+j) | |
else: | |
score[i][j] = -1 | |
un_visible = subset<0.3 | |
candidate[un_visible] = -1 | |
foot = candidate[:,18:24] | |
faces = candidate[:,24:92] | |
hands = candidate[:,92:113] | |
hands = np.vstack([hands, candidate[:,113:]]) | |
bodies = dict(candidate=body, subset=score) | |
pose = dict(bodies=bodies, hands=hands, faces=faces) | |
return draw_pose(pose, H, W), body, ori_score, candidate |