Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,617 Bytes
a62eecb 35f7043 a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 57b4b9a a62eecb 97f231f a62eecb 57b4b9a a62eecb 11ac2e9 a62eecb 57b4b9a a62eecb 57b4b9a 747dadf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import spaces
import gradio as gr
import os
import math
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.dwpose import DWposeDetector
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
import torch
import torch.nn as nn
from src.pose_guider import PoseGuider
from PIL import Image
from src.utils_mask import get_mask_location
import numpy as np
from src.pipeline_stable_diffusion_3_tryon import StableDiffusion3TryOnPipeline
from src.transformer_sd3_garm import SD3Transformer2DModel as SD3Transformer2DModel_Garm
from src.transformer_sd3_vton import SD3Transformer2DModel as SD3Transformer2DModel_Vton
import cv2
import random
from huggingface_hub import snapshot_download
example_path = os.path.join(os.path.dirname(__file__), 'examples')
fitdit_repo = "BoyuanJiang/FitDiT"
repo_path = snapshot_download(repo_id=fitdit_repo)
weight_dtype = torch.bfloat16
device = "cuda"
transformer_garm = SD3Transformer2DModel_Garm.from_pretrained(os.path.join(repo_path, "transformer_garm"), torch_dtype=weight_dtype)
transformer_vton = SD3Transformer2DModel_Vton.from_pretrained(os.path.join(repo_path, "transformer_vton"), torch_dtype=weight_dtype)
pose_guider = PoseGuider(conditioning_embedding_channels=1536, conditioning_channels=3, block_out_channels=(32, 64, 256, 512))
pose_guider.load_state_dict(torch.load(os.path.join(repo_path, "pose_guider", "diffusion_pytorch_model.bin")))
image_encoder_large = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=weight_dtype)
image_encoder_bigG = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", torch_dtype=weight_dtype)
pose_guider.to(device=device, dtype=weight_dtype)
image_encoder_large.to(device=device)
image_encoder_bigG.to(device=device)
pipeline = StableDiffusion3TryOnPipeline.from_pretrained(repo_path, torch_dtype=weight_dtype, \
transformer_garm=transformer_garm, transformer_vton=transformer_vton, pose_guider=pose_guider, \
image_encoder_large=image_encoder_large, image_encoder_bigG=image_encoder_bigG)
pipeline.to(device)
dwprocessor = DWposeDetector(model_root=repo_path, device=device)
parsing_model = Parsing(model_root=repo_path, device=device)
def generate_mask(vton_img, category, offset_top, offset_bottom, offset_left, offset_right):
with torch.inference_mode():
vton_img = Image.open(vton_img)
vton_img_det = resize_image(vton_img)
pose_image, keypoints, _, candidate = dwprocessor(np.array(vton_img_det)[:,:,::-1])
candidate[candidate<0]=0
candidate = candidate[0]
candidate[:, 0]*=vton_img_det.width
candidate[:, 1]*=vton_img_det.height
pose_image = pose_image[:,:,::-1] #rgb
pose_image = Image.fromarray(pose_image)
model_parse, _ = parsing_model(vton_img_det)
mask, mask_gray = get_mask_location(category, model_parse, \
candidate, model_parse.width, model_parse.height, \
offset_top, offset_bottom, offset_left, offset_right)
mask = mask.resize(vton_img.size)
mask_gray = mask_gray.resize(vton_img.size)
mask = mask.convert("L")
mask_gray = mask_gray.convert("L")
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
im = {}
im['background'] = np.array(vton_img.convert("RGBA"))
im['layers'] = [np.concatenate((np.array(mask_gray.convert("RGB")), np.array(mask)[:,:,np.newaxis]),axis=2)]
im['composite'] = np.array(masked_vton_img.convert("RGBA"))
return im, pose_image
@spaces.GPU
def process(vton_img, garm_img, pre_mask, pose_image, n_steps, image_scale, seed, num_images_per_prompt, resolution):
assert resolution in ["768x1024", "1152x1536", "1536x2048"]
new_width, new_height = resolution.split("x")
new_width = int(new_width)
new_height = int(new_height)
with torch.inference_mode():
garm_img = Image.open(garm_img)
vton_img = Image.open(vton_img)
model_image_size = vton_img.size
garm_img, _, _ = pad_and_resize(garm_img, new_width=new_width, new_height=new_height)
vton_img, pad_w, pad_h = pad_and_resize(vton_img, new_width=new_width, new_height=new_height)
mask = pre_mask["layers"][0][:,:,3]
mask = Image.fromarray(mask)
mask, _, _ = pad_and_resize(mask, new_width=new_width, new_height=new_height, pad_color=(0,0,0))
mask = mask.convert("L")
pose_image = Image.fromarray(pose_image)
pose_image, _, _ = pad_and_resize(pose_image, new_width=new_width, new_height=new_height, pad_color=(0,0,0))
if seed==-1:
seed = random.randint(0, 2147483647)
res = pipeline(
height=new_height,
width=new_width,
guidance_scale=image_scale,
num_inference_steps=n_steps,
generator=torch.Generator("cpu").manual_seed(seed),
cloth_image=garm_img,
model_image=vton_img,
mask=mask,
pose_image=pose_image,
num_images_per_prompt=num_images_per_prompt
).images
for idx in range(len(res)):
res[idx] = unpad_and_resize(res[idx], pad_w, pad_h, model_image_size[0], model_image_size[1])
return res
def pad_and_resize(im, new_width=768, new_height=1024, pad_color=(255, 255, 255), mode=Image.LANCZOS):
old_width, old_height = im.size
ratio_w = new_width / old_width
ratio_h = new_height / old_height
if ratio_w < ratio_h:
new_size = (new_width, round(old_height * ratio_w))
else:
new_size = (round(old_width * ratio_h), new_height)
im_resized = im.resize(new_size, mode)
pad_w = math.ceil((new_width - im_resized.width) / 2)
pad_h = math.ceil((new_height - im_resized.height) / 2)
new_im = Image.new('RGB', (new_width, new_height), pad_color)
new_im.paste(im_resized, (pad_w, pad_h))
return new_im, pad_w, pad_h
def unpad_and_resize(padded_im, pad_w, pad_h, original_width, original_height):
width, height = padded_im.size
left = pad_w
top = pad_h
right = width - pad_w
bottom = height - pad_h
cropped_im = padded_im.crop((left, top, right, bottom))
resized_im = cropped_im.resize((original_width, original_height), Image.LANCZOS)
return resized_im
def resize_image(img, target_size=768):
width, height = img.size
if width < height:
scale = target_size / width
else:
scale = target_size / height
new_width = int(round(width * scale))
new_height = int(round(height * scale))
resized_img = img.resize((new_width, new_height), Image.LANCZOS)
return resized_img
HEADER = """
<h1 style="text-align: center;"> FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on </h1>
<div style="display: flex; justify-content: center; align-items: center;">
<a href="https://github.com/BoyuanJiang/FitDiT" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
</a>
<a href="https://arxiv.org/abs/2411.10499" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/arXiv-2411.10499-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
</a>
<a href="http://demo.fitdit.byjiang.com/" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
</a>
<a href='https://byjiang.com/FitDiT/' style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
</a>
<a href="https://raw.githubusercontent.com/BoyuanJiang/FitDiT/refs/heads/main/LICENSE" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
</a>
</div>
<br>
FitDiT is designed for high-fidelity virtual try-on using Diffusion Transformers (DiT). It can only be used for <b>Non-commercial Use</b>.<br>
If you like our work, please star <a href="https://github.com/BoyuanJiang/FitDiT" style="color: blue; text-decoration: underline;">our github repository</a>. A <b>ComfyUI version</b> of FitDiT is available <a href="https://github.com/BoyuanJiang/FitDiT/tree/FitDiT-ComfyUI" style="color: blue; text-decoration: underline;">here</a>.
"""
def create_demo():
with gr.Blocks(title="FitDiT") as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column():
vton_img = gr.Image(label="Model", sources=None, type="filepath", height=512)
with gr.Column():
garm_img = gr.Image(label="Garment", sources=None, type="filepath", height=512)
with gr.Row():
with gr.Column():
masked_vton_img = gr.ImageEditor(label="masked_vton_img", type="numpy", height=512, interactive=True, brush=gr.Brush(default_color="rgb(127, 127, 127)", colors=[
"rgb(128, 128, 128)"
]))
pose_image = gr.Image(label="pose_image", visible=False, interactive=False)
with gr.Column():
result_gallery = gr.Gallery(label="Output", elem_id="output-img", interactive=False, columns=[2], rows=[2], object_fit="contain", height="auto")
with gr.Row():
with gr.Column():
offset_top = gr.Slider(label="mask offset top", minimum=-200, maximum=200, step=1, value=0)
with gr.Column():
offset_bottom = gr.Slider(label="mask offset bottom", minimum=-200, maximum=200, step=1, value=0)
with gr.Column():
offset_left = gr.Slider(label="mask offset left", minimum=-200, maximum=200, step=1, value=0)
with gr.Column():
offset_right = gr.Slider(label="mask offset right", minimum=-200, maximum=200, step=1, value=0)
with gr.Row():
with gr.Column():
n_steps = gr.Slider(label="Steps", minimum=15, maximum=30, value=20, step=1)
with gr.Column():
image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2, step=0.1)
with gr.Column():
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
with gr.Column():
num_images_per_prompt = gr.Slider(label="num_images", minimum=1, maximum=4, step=1, value=1)
with gr.Row():
with gr.Column():
example = gr.Examples(
label="Model (upper-body)",
inputs=vton_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'model/0279.jpg'),
os.path.join(example_path, 'model/0303.jpg'),
os.path.join(example_path, 'model/2.jpg'),
os.path.join(example_path, 'model/0083.jpg'),
])
example = gr.Examples(
label="Model (upper-body/lower-body)",
inputs=vton_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'model/0.jpg'),
os.path.join(example_path, 'model/0179.jpg'),
os.path.join(example_path, 'model/0223.jpg'),
os.path.join(example_path, 'model/0347.jpg'),
])
example = gr.Examples(
label="Model (dresses)",
inputs=vton_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'model/4.jpg'),
os.path.join(example_path, 'model/5.jpg'),
os.path.join(example_path, 'model/6.jpg'),
os.path.join(example_path, 'model/7.jpg'),
])
with gr.Column():
example = gr.Examples(
label="Garment (upper-body)",
inputs=garm_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/12.jpg'),
os.path.join(example_path, 'garment/0012.jpg'),
os.path.join(example_path, 'garment/0047.jpg'),
os.path.join(example_path, 'garment/0049.jpg'),
])
example = gr.Examples(
label="Garment (lower-body)",
inputs=garm_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/0317.jpg'),
os.path.join(example_path, 'garment/0327.jpg'),
os.path.join(example_path, 'garment/0329.jpg'),
os.path.join(example_path, 'garment/0362.jpg'),
])
example = gr.Examples(
label="Garment (dresses)",
inputs=garm_img,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/8.jpg'),
os.path.join(example_path, 'garment/9.png'),
os.path.join(example_path, 'garment/10.jpg'),
os.path.join(example_path, 'garment/11.jpg'),
])
with gr.Column():
category = gr.Dropdown(label="Garment category", choices=["Upper-body", "Lower-body", "Dresses"], value="Upper-body")
resolution = gr.Dropdown(label="Try-on resolution", choices=["768x1024", "1152x1536", "1536x2048"], value="768x1024")
with gr.Column():
run_mask_button = gr.Button(value="Step1: Run Mask")
run_button = gr.Button(value="Step2: Run Try-on")
ips1 = [vton_img, category, offset_top, offset_bottom, offset_left, offset_right]
ips2 = [vton_img, garm_img, masked_vton_img, pose_image, n_steps, image_scale, seed, num_images_per_prompt, resolution]
run_mask_button.click(fn=generate_mask, inputs=ips1, outputs=[masked_vton_img, pose_image])
run_button.click(fn=process, inputs=ips2, outputs=[result_gallery])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()
|