Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,390 Bytes
a62eecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import pdb
from pathlib import Path
import sys
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
import os
import torch
import numpy as np
import cv2
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from datasets.simple_extractor_dataset import SimpleFolderDataset
from utils.transforms import transform_logits
from tqdm import tqdm
from PIL import Image
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def delete_irregular(logits_result):
parsing_result = np.argmax(logits_result, axis=2)
upper_cloth = np.where(parsing_result == 4, 255, 0)
contours, hierarchy = cv2.findContours(upper_cloth.astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
area = []
for i in range(len(contours)):
a = cv2.contourArea(contours[i], True)
area.append(abs(a))
if len(area) != 0:
top = area.index(max(area))
M = cv2.moments(contours[top])
cY = int(M["m01"] / M["m00"])
dresses = np.where(parsing_result == 7, 255, 0)
contours_dress, hierarchy_dress = cv2.findContours(dresses.astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
area_dress = []
for j in range(len(contours_dress)):
a_d = cv2.contourArea(contours_dress[j], True)
area_dress.append(abs(a_d))
if len(area_dress) != 0:
top_dress = area_dress.index(max(area_dress))
M_dress = cv2.moments(contours_dress[top_dress])
cY_dress = int(M_dress["m01"] / M_dress["m00"])
wear_type = "dresses"
if len(area) != 0:
if len(area_dress) != 0 and cY_dress > cY:
irregular_list = np.array([4, 5, 6])
logits_result[:, :, irregular_list] = -1
else:
irregular_list = np.array([5, 6, 7, 8, 9, 10, 12, 13])
logits_result[:cY, :, irregular_list] = -1
wear_type = "cloth_pant"
parsing_result = np.argmax(logits_result, axis=2)
# pad border
parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
return parsing_result, wear_type
def hole_fill(img):
img_copy = img.copy()
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
cv2.floodFill(img, mask, (0, 0), 255)
img_inverse = cv2.bitwise_not(img)
dst = cv2.bitwise_or(img_copy, img_inverse)
return dst
def refine_mask(mask):
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
area = []
for j in range(len(contours)):
a_d = cv2.contourArea(contours[j], True)
area.append(abs(a_d))
refine_mask = np.zeros_like(mask).astype(np.uint8)
if len(area) != 0:
i = area.index(max(area))
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
# keep large area in skin case
for j in range(len(area)):
if j != i and area[i] > 2000:
cv2.drawContours(refine_mask, contours, j, color=255, thickness=-1)
return refine_mask
def refine_hole(parsing_result_filled, parsing_result, arm_mask):
filled_hole = cv2.bitwise_and(np.where(parsing_result_filled == 4, 255, 0),
np.where(parsing_result != 4, 255, 0)) - arm_mask * 255
contours, hierarchy = cv2.findContours(filled_hole, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
refine_hole_mask = np.zeros_like(parsing_result).astype(np.uint8)
for i in range(len(contours)):
a = cv2.contourArea(contours[i], True)
# keep hole > 2000 pixels
if abs(a) > 2000:
cv2.drawContours(refine_hole_mask, contours, i, color=255, thickness=-1)
return refine_hole_mask + arm_mask
def onnx_inference(session, lip_session, input_dir):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
])
dataset = SimpleFolderDataset(root=input_dir, input_size=[512, 512], transform=transform)
dataloader = DataLoader(dataset)
with torch.no_grad():
for _, batch in enumerate(dataloader):
image, meta = batch
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
output = session.run(None, {"input.1": image.numpy().astype(np.float32)})
upsample = torch.nn.Upsample(size=[512, 512], mode='bilinear', align_corners=True)
upsample_output = upsample(torch.from_numpy(output[1][0]).unsqueeze(0))
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=[512, 512])
parsing_result = np.argmax(logits_result, axis=2)
parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
# try holefilling the clothes part
arm_mask = (parsing_result == 14).astype(np.float32) \
+ (parsing_result == 15).astype(np.float32)
upper_cloth_mask = (parsing_result == 4).astype(np.float32) + arm_mask
img = np.where(upper_cloth_mask, 255, 0)
dst = hole_fill(img.astype(np.uint8))
parsing_result_filled = dst / 255 * 4
parsing_result_woarm = np.where(parsing_result_filled == 4, parsing_result_filled, parsing_result)
# add back arm and refined hole between arm and cloth
refine_hole_mask = refine_hole(parsing_result_filled.astype(np.uint8), parsing_result.astype(np.uint8),
arm_mask.astype(np.uint8))
parsing_result = np.where(refine_hole_mask, parsing_result, parsing_result_woarm)
# remove padding
parsing_result = parsing_result[1:-1, 1:-1]
dataset_lip = SimpleFolderDataset(root=input_dir, input_size=[473, 473], transform=transform)
dataloader_lip = DataLoader(dataset_lip)
with torch.no_grad():
for _, batch in enumerate(dataloader_lip):
image, meta = batch
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
output_lip = lip_session.run(None, {"input.1": image.numpy().astype(np.float32)})
upsample = torch.nn.Upsample(size=[473, 473], mode='bilinear', align_corners=True)
upsample_output_lip = upsample(torch.from_numpy(output_lip[1][0]).unsqueeze(0))
upsample_output_lip = upsample_output_lip.squeeze()
upsample_output_lip = upsample_output_lip.permute(1, 2, 0) # CHW -> HWC
logits_result_lip = transform_logits(upsample_output_lip.data.cpu().numpy(), c, s, w, h,
input_size=[473, 473])
parsing_result_lip = np.argmax(logits_result_lip, axis=2)
# add neck parsing result
neck_mask = np.logical_and(np.logical_not((parsing_result_lip == 13).astype(np.float32)),
(parsing_result == 11).astype(np.float32))
parsing_result = np.where(neck_mask, 18, parsing_result)
palette = get_palette(19)
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(palette)
face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32))
return output_img, face_mask
|