File size: 3,489 Bytes
a62eecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
import torch.nn.functional as functional

from models._util import try_index
from .bn import ABN


class DeeplabV3(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 hidden_channels=256,
                 dilations=(12, 24, 36),
                 norm_act=ABN,
                 pooling_size=None):
        super(DeeplabV3, self).__init__()
        self.pooling_size = pooling_size

        self.map_convs = nn.ModuleList([
            nn.Conv2d(in_channels, hidden_channels, 1, bias=False),
            nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[0], padding=dilations[0]),
            nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[1], padding=dilations[1]),
            nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[2], padding=dilations[2])
        ])
        self.map_bn = norm_act(hidden_channels * 4)

        self.global_pooling_conv = nn.Conv2d(in_channels, hidden_channels, 1, bias=False)
        self.global_pooling_bn = norm_act(hidden_channels)

        self.red_conv = nn.Conv2d(hidden_channels * 4, out_channels, 1, bias=False)
        self.pool_red_conv = nn.Conv2d(hidden_channels, out_channels, 1, bias=False)
        self.red_bn = norm_act(out_channels)

        self.reset_parameters(self.map_bn.activation, self.map_bn.slope)

    def reset_parameters(self, activation, slope):
        gain = nn.init.calculate_gain(activation, slope)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data, gain)
                if hasattr(m, "bias") and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, ABN):
                if hasattr(m, "weight") and m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if hasattr(m, "bias") and m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        # Map convolutions
        out = torch.cat([m(x) for m in self.map_convs], dim=1)
        out = self.map_bn(out)
        out = self.red_conv(out)

        # Global pooling
        pool = self._global_pooling(x)
        pool = self.global_pooling_conv(pool)
        pool = self.global_pooling_bn(pool)
        pool = self.pool_red_conv(pool)
        if self.training or self.pooling_size is None:
            pool = pool.repeat(1, 1, x.size(2), x.size(3))

        out += pool
        out = self.red_bn(out)
        return out

    def _global_pooling(self, x):
        if self.training or self.pooling_size is None:
            pool = x.view(x.size(0), x.size(1), -1).mean(dim=-1)
            pool = pool.view(x.size(0), x.size(1), 1, 1)
        else:
            pooling_size = (min(try_index(self.pooling_size, 0), x.shape[2]),
                            min(try_index(self.pooling_size, 1), x.shape[3]))
            padding = (
                (pooling_size[1] - 1) // 2,
                (pooling_size[1] - 1) // 2 if pooling_size[1] % 2 == 1 else (pooling_size[1] - 1) // 2 + 1,
                (pooling_size[0] - 1) // 2,
                (pooling_size[0] - 1) // 2 if pooling_size[0] % 2 == 1 else (pooling_size[0] - 1) // 2 + 1
            )

            pool = functional.avg_pool2d(x, pooling_size, stride=1)
            pool = functional.pad(pool, pad=padding, mode="replicate")
        return pool