Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,628 Bytes
a62eecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import pickle as pkl
import sys
import torch
"""
Usage:
# download one of the ResNet{18,34,50,101,152} models from torchvision:
wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O r50.pth
# run the conversion
./convert-torchvision-to-d2.py r50.pth r50.pkl
# Then, use r50.pkl with the following changes in config:
MODEL:
WEIGHTS: "/path/to/r50.pkl"
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
RESNETS:
DEPTH: 50
STRIDE_IN_1X1: False
INPUT:
FORMAT: "RGB"
These models typically produce slightly worse results than the
pre-trained ResNets we use in official configs, which are the
original ResNet models released by MSRA.
"""
if __name__ == "__main__":
input = sys.argv[1]
obj = torch.load(input, map_location="cpu")
newmodel = {}
for k in list(obj.keys()):
old_k = k
if "layer" not in k:
k = "stem." + k
for t in [1, 2, 3, 4]:
k = k.replace("layer{}".format(t), "res{}".format(t + 1))
for t in [1, 2, 3]:
k = k.replace("bn{}".format(t), "conv{}.norm".format(t))
k = k.replace("downsample.0", "shortcut")
k = k.replace("downsample.1", "shortcut.norm")
print(old_k, "->", k)
newmodel[k] = obj.pop(old_k).detach().numpy()
res = {"model": newmodel, "__author__": "torchvision", "matching_heuristics": True}
with open(sys.argv[2], "wb") as f:
pkl.dump(res, f)
if obj:
print("Unconverted keys:", obj.keys())
|