File size: 5,022 Bytes
a62eecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
A script to benchmark builtin models.

Note: this script has an extra dependency of psutil.
"""

import itertools
import logging
import psutil
import torch
import tqdm
from fvcore.common.timer import Timer
from torch.nn.parallel import DistributedDataParallel

from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
    DatasetFromList,
    build_detection_test_loader,
    build_detection_train_loader,
)
from detectron2.engine import SimpleTrainer, default_argument_parser, hooks, launch
from detectron2.modeling import build_model
from detectron2.solver import build_optimizer
from detectron2.utils import comm
from detectron2.utils.events import CommonMetricPrinter
from detectron2.utils.logger import setup_logger

logger = logging.getLogger("detectron2")


def setup(args):
    cfg = get_cfg()
    cfg.merge_from_file(args.config_file)
    cfg.SOLVER.BASE_LR = 0.001  # Avoid NaNs. Not useful in this script anyway.
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    setup_logger(distributed_rank=comm.get_rank())
    return cfg


def benchmark_data(args):
    cfg = setup(args)

    timer = Timer()
    dataloader = build_detection_train_loader(cfg)
    logger.info("Initialize loader using {} seconds.".format(timer.seconds()))

    timer.reset()
    itr = iter(dataloader)
    for i in range(10):  # warmup
        next(itr)
        if i == 0:
            startup_time = timer.seconds()
    timer = Timer()
    max_iter = 1000
    for _ in tqdm.trange(max_iter):
        next(itr)
    logger.info(
        "{} iters ({} images) in {} seconds.".format(
            max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
        )
    )
    logger.info("Startup time: {} seconds".format(startup_time))
    vram = psutil.virtual_memory()
    logger.info(
        "RAM Usage: {:.2f}/{:.2f} GB".format(
            (vram.total - vram.available) / 1024 ** 3, vram.total / 1024 ** 3
        )
    )

    # test for a few more rounds
    for _ in range(10):
        timer = Timer()
        max_iter = 1000
        for _ in tqdm.trange(max_iter):
            next(itr)
        logger.info(
            "{} iters ({} images) in {} seconds.".format(
                max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()
            )
        )


def benchmark_train(args):
    cfg = setup(args)
    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if comm.get_world_size() > 1:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )
    optimizer = build_optimizer(cfg, model)
    checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
    checkpointer.load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_train_loader(cfg)
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        data = DatasetFromList(dummy_data, copy=False)
        while True:
            yield from data

    max_iter = 400
    trainer = SimpleTrainer(model, f(), optimizer)
    trainer.register_hooks(
        [hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)])]
    )
    trainer.train(1, max_iter)


@torch.no_grad()
def benchmark_eval(args):
    cfg = setup(args)
    model = build_model(cfg)
    model.eval()
    logger.info("Model:\n{}".format(model))
    DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        while True:
            yield from DatasetFromList(dummy_data, copy=False)

    for _ in range(5):  # warmup
        model(dummy_data[0])

    max_iter = 400
    timer = Timer()
    with tqdm.tqdm(total=max_iter) as pbar:
        for idx, d in enumerate(f()):
            if idx == max_iter:
                break
            model(d)
            pbar.update()
    logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))


if __name__ == "__main__":
    parser = default_argument_parser()
    parser.add_argument("--task", choices=["train", "eval", "data"], required=True)
    args = parser.parse_args()
    assert not args.eval_only

    if args.task == "data":
        f = benchmark_data
    elif args.task == "train":
        """
        Note: training speed may not be representative.
        The training cost of a R-CNN model varies with the content of the data
        and the quality of the model.
        """
        f = benchmark_train
    elif args.task == "eval":
        f = benchmark_eval
        # only benchmark single-GPU inference.
        assert args.num_gpus == 1 and args.num_machines == 1
    launch(f, args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, args=(args,))