BigDoge's picture
add LICENSE
e64ce90
"""This script refers to the dialogue example of streamlit, the interactive
generation code of chatglm2 and transformers.
We mainly modified part of the code logic to adapt to the
generation of our model.
Please refer to these links below for more information:
1. streamlit chat example:
https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
2. chatglm2:
https://github.com/THUDM/ChatGLM2-6B
3. transformers:
https://github.com/huggingface/transformers
Please run with the command `streamlit run path/to/web_demo.py
--server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""
# isort: skip_file
import copy
import re
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional
import streamlit as st
import torch
from torch import nn
from transformers.generation.utils import LogitsProcessorList
from transformers.utils import logging
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
logger = logging.get_logger(__name__)
st.set_page_config(layout='wide')
@dataclass
class GenerationConfig:
# this config is used for chat to provide more diversity
max_length: int = 32768
top_p: float = 0.8
temperature: float = 0.8
do_sample: bool = True
repetition_penalty: float = 1.005
@torch.inference_mode()
def generate_interactive(
model,
tokenizer,
prompt,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
additional_eos_token_id: Optional[int] = None,
**kwargs,
):
inputs = tokenizer([prompt], padding=True, return_tensors='pt')
input_length = len(inputs['input_ids'][0])
for k, v in inputs.items():
inputs[k] = v.to(model.device)
input_ids = inputs['input_ids']
_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = model.generation_config
generation_config = copy.deepcopy(generation_config)
generation_config._eos_token_tensor = generation_config.eos_token_id
model_kwargs = generation_config.update(**kwargs)
if generation_config.temperature == 0.0:
generation_config.do_sample = False
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get('max_length') is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using 'max_length''s default \
({repr(generation_config.max_length)}) \
to control the generation length. "
'This behaviour is deprecated and will be removed from the \
config in v5 of Transformers -- we'
' recommend using `max_new_tokens` to control the maximum \
length of the generation.',
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn( # pylint: disable=W4902
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
f"and 'max_length'(={generation_config.max_length}) seem to "
"have been set. 'max_new_tokens' will take precedence. "
'Please refer to the documentation for more information. '
'(https://huggingface.co/docs/transformers/main/'
'en/main_classes/text_generation)',
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = 'input_ids'
logger.warning(
f'Input length of {input_ids_string} is {input_ids_seq_length}, '
f"but 'max_length' is set to {generation_config.max_length}. "
'This can lead to unexpected behavior. You should consider'
" increasing 'max_new_tokens'."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
while True:
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
if output_token_ids[-1] == each_eos_token_id:
output_token_ids = output_token_ids[:-1]
response = tokenizer.decode(output_token_ids)
yield response
# stop when each sentence is finished
# or if we exceed the maximum length
if unfinished_sequences.max() == 0:
break
def on_btn_click():
del st.session_state.messages
del st.session_state.deepthink_messages
def postprocess(text, add_prefix=True, deepthink=False):
text = re.sub(r'\\\(|\\\)', r'$', text)
text = re.sub(r'\\\[|\\\]', r'$$', text)
if add_prefix:
text = (':red[[Deep Thinking]]\n\n' if deepthink else ':blue[[Normal Response]]\n\n') + text
return text
@st.cache_resource
def load_model():
model_path = 'internlm/internlm3-8b-instruct'
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, device_map='auto', torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider('Max Length', min_value=8, max_value=32768, value=32768)
top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
radio = st.radio('Inference Mode', ['Normal Response', 'Deep Thinking'], key='mode')
st.button('Clear Chat History', on_click=on_btn_click)
st.session_state['inference_mode'] = radio
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
<|im_start|>assistant\n'
def combine_history(prompt, deepthink=False, start=0, stop=None):
if stop is None:
stop = len(st.session_state.messages)
elif stop < 0:
stop = len(st.session_state.messages) + stop
messages = []
for idx in range(start, stop):
message, deepthink_message = st.session_state.messages[idx], st.session_state.deepthink_messages[idx]
if deepthink:
if deepthink_message['content'] is not None:
messages.append(deepthink_message)
else:
messages.append(message)
else:
if message['content'] is not None:
messages.append(message)
else:
messages.append(deepthink_message)
meta_instruction = (
'You are InternLM (书生·浦语), a helpful, honest, '
'and harmless AI assistant developed by Shanghai '
'AI Laboratory (上海人工智能实验室).'
)
if deepthink:
meta_instruction += """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
""" # noqa: E501
total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
for message in messages:
cur_content = message['content']
if message['role'] == 'user':
cur_prompt = user_prompt.format(user=cur_content)
elif message['role'] == 'robot':
cur_prompt = robot_prompt.format(robot=cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
return total_prompt
def main():
# torch.cuda.empty_cache()
print('load model begin.')
model, tokenizer = load_model()
print('load model end.')
user_avator = 'assets/user.png'
robot_avator = 'assets/robot.png'
st.title('InternLM3-8B-Instruct')
generation_config = prepare_generation_config()
def render_message(msg, msg_idx, deepthink):
if msg['content'] is None:
real_prompt = combine_history(
st.session_state.messages[msg_idx - 1]['content'], deepthink=deepthink, stop=msg_idx - 1
)
placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
placeholder.markdown(postprocess(cur_response, deepthink=deepthink) + '▌')
placeholder.markdown(postprocess(cur_response, deepthink=deepthink))
msg['content'] = cur_response
torch.cuda.empty_cache()
else:
st.markdown(postprocess(msg['content'], deepthink=deepthink))
# Initialize chat history
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'deepthink_messages' not in st.session_state:
st.session_state.deepthink_messages = []
# Display chat messages from history on app rerun
for idx, (message, deepthink_message) in enumerate(
zip(st.session_state.messages, st.session_state.deepthink_messages)
):
with st.chat_message(message['role'], avatar=message.get('avatar')):
if message['role'] == 'user':
st.markdown(postprocess(message['content'], add_prefix=False))
else:
if st.toggle('compare', key=f'compare_{idx}'):
cols = st.columns(2)
if st.session_state['inference_mode'] == 'Deep Thinking':
with cols[1]:
render_message(deepthink_message, idx, True)
with cols[0]:
render_message(message, idx, False)
else:
with cols[0]:
render_message(message, idx, False)
with cols[1]:
render_message(deepthink_message, idx, True)
else:
if st.session_state['inference_mode'] == 'Deep Thinking':
if deepthink_message['content'] is not None:
st.markdown(postprocess(deepthink_message['content'], deepthink=True))
else:
st.markdown(postprocess(message['content']))
else:
if message['content'] is not None:
st.markdown(postprocess(message['content']))
else:
st.markdown(postprocess(deepthink_message['content'], deepthink=True))
# Accept user input
if prompt := st.chat_input('What is up?'):
# Display user message in chat message container
with st.chat_message('user', avatar=user_avator):
st.markdown(postprocess(prompt, add_prefix=False))
real_prompt = combine_history(prompt, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
# Add user message to chat history
st.session_state.messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
st.session_state.deepthink_messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
with st.chat_message('robot', avatar=robot_avator):
st.toggle('compare', key=f'compare_{len(st.session_state.messages)}')
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(
postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking') + '▌'
)
message_placeholder.markdown(
postprocess(cur_response, deepthink=st.session_state['inference_mode'] == 'Deep Thinking')
)
# Add robot response to chat history
response, deepthink_response = (
(None, cur_response) if st.session_state['inference_mode'] == 'Deep Thinking' else (cur_response, None)
)
st.session_state.messages.append(
{
'role': 'robot',
'content': response, # pylint: disable=undefined-loop-variable
'avatar': robot_avator,
}
)
st.session_state.deepthink_messages.append(
{
'role': 'robot',
'content': deepthink_response,
'avatar': robot_avator,
}
)
torch.cuda.empty_cache()
main()