Spaces:
Runtime error
Runtime error
# | |
# Copyright 2016 The BigDL Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Part of the code in this file is adapted from | |
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py and | |
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/train.py | |
# MIT License | |
# Copyright (c) 2022 Lorenzo Breschi | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import gradio as gr | |
import numpy as np | |
import time | |
from data import PatchDataModule, prepare_data, image2tensor, tensor2image | |
import torch | |
from tqdm import tqdm | |
from bigdl.nano.pytorch.trainer import Trainer | |
from torch.utils.data import DataLoader | |
from pathlib import Path | |
from torch.utils.data import Dataset | |
import datetime | |
import huggingface_hub | |
device = 'cpu' | |
dtype = torch.float32 | |
MODEL_REPO = 'BigDL/FSPBT' | |
ckpt_path = huggingface_hub.hf_hub_download( | |
MODEL_REPO, 'generator.pt') | |
generator = torch.load(ckpt_path) | |
generator.eval() | |
generator.to(device, dtype) | |
params = {'batch_size': 1, | |
'num_workers': 0} | |
class ImageDataset(Dataset): | |
def __init__(self, img): | |
self.imgs = [image2tensor(img)] | |
def __getitem__(self, idx: int) -> dict: | |
return self.imgs[idx] | |
def __len__(self) -> int: | |
return len(self.imgs) | |
data_path = Path('data/webcam') | |
train_image_dd = prepare_data(data_path) | |
dm = PatchDataModule(train_image_dd, patch_size=2**6, | |
batch_size=2**3, patch_num=2**6) | |
# quantize model | |
train_loader = dm.train_dataloader() | |
train_loader_iter = iter(train_loader) | |
quantized_model = Trainer.quantize(generator, accelerator=None, | |
calib_dataloader=train_loader) | |
def original_transfer(input_img): | |
w, h, _ = input_img.shape | |
print(datetime.datetime.now()) | |
print("input size: ", w, h) | |
# resize too large image | |
if w > 3000 or h > 3000: | |
ratio = min(3000 / w, 3000 / h) | |
w = int(w * ratio) | |
h = int(h * ratio) | |
if w % 4 != 0 or h % 4 != 0: | |
NW = int((w // 4) * 4) | |
NH = int((h // 4) * 4) | |
input_img = np.resize(input_img,(NW,NH,3)) | |
st = time.perf_counter() | |
dataset = ImageDataset(input_img) | |
loader = DataLoader(dataset, **params) | |
with torch.no_grad(): | |
for inputs in tqdm(loader): | |
inputs = inputs.to(device, dtype) | |
st = time.perf_counter() | |
outputs = generator(inputs) | |
ori_time = time.perf_counter() - st | |
ori_time = "{:.3f}s".format(ori_time) | |
ori_image = np.array(tensor2image(outputs[0])) | |
del inputs | |
del outputs | |
return ori_image, ori_time | |
def nano_transfer(input_img): | |
w, h, _ = input_img.shape | |
print(datetime.datetime.now()) | |
print("input size: ", w, h) | |
# resize too large image | |
if w > 3000 or h > 3000: | |
ratio = min(3000 / w, 3000 / h) | |
w = int(w * ratio) | |
h = int(h * ratio) | |
if w % 4 != 0 or h % 4 != 0: | |
NW = int((w // 4) * 4) | |
NH = int((h // 4) * 4) | |
input_img = np.resize(input_img,(NW,NH,3)) | |
st = time.perf_counter() | |
dataset = ImageDataset(input_img) | |
loader = DataLoader(dataset, **params) | |
with torch.no_grad(): | |
for inputs in tqdm(loader): | |
inputs = inputs.to(device, dtype) | |
st = time.perf_counter() | |
outputs = quantized_model(inputs) | |
nano_time = time.perf_counter() - st | |
nano_time = "{:.3f}s".format(nano_time) | |
nano_image = np.array(tensor2image(outputs[0])) | |
del inputs | |
del outputs | |
return nano_image, nano_time | |
def clear(): | |
return None, None, None, None | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("<h1><center>BigDL-Nano Demo</center></h1>") | |
with gr.Row().style(equal_height=False): | |
with gr.Column(): | |
gr.Markdown(''' | |
<h2>Overview</h2> | |
BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p> | |
The animation on the right shows how the user can easily enable training using BigDL-Nano with just one line of change. | |
''') | |
with gr.Column(): | |
gr.Video(value="data/training_api.mp4") | |
gr.Markdown(''' | |
The below animation shows how the user can easily enable acceleration and quantization using BigDL-Nano with just a couple of lines of code; you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details. | |
''') | |
with gr.Row().style(equal_height=True): | |
with gr.Column(): | |
gr.Video(value="data/openvino_api.mp4") | |
with gr.Column(): | |
gr.Video(value="data/quantize_ort_api.mp4") | |
gr.Markdown(''' | |
<h2>Demo</h2> | |
This section we show an inference demo by using an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). | |
This inference demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation), | |
and the default image is from [the COCO dataset](https://cocodataset.org/#home). | |
''') | |
with gr.Row().style(equal_height=False): | |
input_img = gr.Image(label="input image", value="data/COCO_image.jpg", source="upload") | |
with gr.Column(): | |
ori_but = gr.Button("Standard PyTorch Lightning") | |
nano_but = gr.Button("BigDL-Nano") | |
clear_but = gr.Button("Clear Output") | |
with gr.Row().style(equal_height=False): | |
with gr.Column(): | |
ori_time = gr.Text(label="Standard PyTorch Lightning latency") | |
ori_image = gr.Image(label="Standard PyTorch Lightning output image") | |
with gr.Column(): | |
nano_time = gr.Text(label="BigDL-Nano latency") | |
nano_image = gr.Image(label="BigDL-Nano output image") | |
ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time]) | |
nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time]) | |
clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time]) | |
demo.launch(share=True, enable_queue=True) |