"""Start page of the app This page is used to initialize a model card that is either: 1. based on the skops template 2. empty 3. loads an existing model card Optionally, users can add a model file, data, requirements, and choose a task. """ import glob import io import os import pickle import shutil from pathlib import Path from tempfile import mkdtemp import pandas as pd import sklearn import streamlit as st from huggingface_hub import hf_hub_download from sklearn.base import BaseEstimator from sklearn.dummy import DummyClassifier import skops.io as sio from skops import card, hub_utils hf_path = Path(mkdtemp(prefix="skops-")) # hf repo tmp_path = Path(mkdtemp(prefix="skops-")) # temporary files description = """Create an sklearn model card This Hugging Face Space that aims to provide a simple interface to use the [`skops`](https://skops.readthedocs.io/) model card creation utilities. """ def load_model() -> None: if st.session_state.get("model_file") is None: st.session_state.model = DummyClassifier() return bytes_data = st.session_state.model_file.getvalue() model = pickle.loads(bytes_data) assert isinstance(model, BaseEstimator), "model must be an sklearn model" st.session_state.model = model def load_data() -> None: if st.session_state.get("data_file"): bytes_data = io.BytesIO(st.session_state.data_file.getvalue()) df = pd.read_csv(bytes_data) else: df = pd.DataFrame([]) st.session_state.data = df def _clear_repo(path: str) -> None: for file_path in glob.glob(str(Path(path) / "*")): if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) def init_repo(path: str) -> None: _clear_repo(path) requirements = [] task = "tabular-classification" data = pd.DataFrame([]) if "requirements" in st.session_state: requirements = st.session_state.requirements.splitlines() if "task" in st.session_state: task = st.session_state.task if "data_file" in st.session_state: load_data() data = st.session_state.data if task.startswith("text") and isinstance(data, pd.DataFrame): data = data.values.tolist() try: file_name = tmp_path / "model.skops" sio.dump(st.session_state.model, file_name) hub_utils.init( model=file_name, dst=path, task=task, data=data, requirements=requirements, ) 1 except Exception as exc: print("Uh oh, something went wrong when initializing the repo:", exc) def create_skops_model_card() -> None: init_repo(hf_path) metadata = card.metadata_from_config(hf_path) model_card = card.Card(model=st.session_state.model, metadata=metadata) st.session_state.model_card = model_card st.session_state.model_card_type = "skops" def create_empty_model_card() -> None: init_repo(hf_path) metadata = card.metadata_from_config(hf_path) model_card = card.Card( model=st.session_state.model, metadata=metadata, template=None ) model_card.add(**{"Untitled": "[More Information Needed]"}) st.session_state.model_card = model_card st.session_state.model_card_type = "empty" def create_hf_model_card() -> None: repo_id = st.session_state.get("hf_repo_id", "").strip("'").strip('"') if not repo_id: return print("downloading model card") path = hf_hub_download(repo_id, "README.md") model_card = card.parse_modelcard(path) st.session_state.model_card = model_card st.session_state.model_card_type = "loaded" def start_input_form(): if "model" not in st.session_state: st.session_state.model = DummyClassifier() if "data" not in st.session_state: st.session_state.data = pd.DataFrame([]) if "model_card" not in st.session_state: st.session_state.model_card = None st.markdown(description) st.markdown("---") st.text( "Upload an sklearn model (strongly recommended)\n" "The model can be used to automatically populate fields in the model card." ) st.file_uploader("Upload a model*", on_change=load_model, key="model_file") st.markdown("---") st.text( "Upload samples from your data (in csv format)\n" "This sample data can be attached to the metadata of the model card" ) st.file_uploader( "Upload X data (csv)*", type=["csv"], on_change=load_data, key="data_file" ) st.markdown("---") st.selectbox( label="Choose the task type*", options=[ "tabular-classification", "tabular-regression", "text-classification", "text-regression", ], key="task", on_change=init_repo, args=(hf_path,), ) st.markdown("---") st.text_area( label="Requirements*", value=f"scikit-learn=={sklearn.__version__}\n", key="requirements", on_change=init_repo, args=(hf_path,), ) st.markdown("---") st.markdown("Choose one of the options below to get started:") col_0, col_1, col_2 = st.columns([2, 2, 2]) with col_0: st.button("Create a new skops model card", on_click=create_skops_model_card) with col_1: st.button("Create a new empty model card", on_click=create_empty_model_card) with col_2: with st.form("Load existing model card from HF Hub", clear_on_submit=False): st.text_input("Repo name (e.g. 'gpt2')", key="hf_repo_id") st.form_submit_button("Load", on_click=create_hf_model_card) start_input_form()