Spaces:
Runtime error
Runtime error
File size: 5,771 Bytes
f4f6aba 31a1df6 94e602d 31a1df6 00bfdf9 82fe48d 31a1df6 2174ccd 31a1df6 94e602d 31a1df6 2174ccd 31a1df6 2174ccd 31a1df6 94e602d 31a1df6 94e602d 31a1df6 132e2aa 31a1df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""Start page of the app
This page is used to initialize a model card that is either:
1. based on the skops template
2. empty
3. loads an existing model card
Optionally, users can add a model file, data, requirements, and choose a task.
"""
import glob
import io
import os
import pickle
import shutil
from pathlib import Path
from tempfile import mkdtemp
import pandas as pd
import sklearn
import streamlit as st
from huggingface_hub import hf_hub_download
from sklearn.base import BaseEstimator
from sklearn.dummy import DummyClassifier
import skops.io as sio
from skops import card, hub_utils
hf_path = Path(mkdtemp(prefix="skops-")) # hf repo
tmp_path = Path(mkdtemp(prefix="skops-")) # temporary files
description = """Create an sklearn model card
This Hugging Face Space that aims to provide a simple interface to use the
[`skops`](https://skops.readthedocs.io/) model card creation utilities.
"""
def load_model() -> None:
if st.session_state.get("model_file") is None:
st.session_state.model = DummyClassifier()
return
bytes_data = st.session_state.model_file.getvalue()
model = pickle.loads(bytes_data)
assert isinstance(model, BaseEstimator), "model must be an sklearn model"
st.session_state.model = model
def load_data() -> None:
if st.session_state.get("data_file"):
bytes_data = io.BytesIO(st.session_state.data_file.getvalue())
df = pd.read_csv(bytes_data)
else:
df = pd.DataFrame([])
st.session_state.data = df
def _clear_repo(path: str) -> None:
for file_path in glob.glob(str(Path(path) / "*")):
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
def init_repo(path: str) -> None:
_clear_repo(path)
requirements = []
task = "tabular-classification"
data = pd.DataFrame([])
if "requirements" in st.session_state:
requirements = st.session_state.requirements.splitlines()
if "task" in st.session_state:
task = st.session_state.task
if "data_file" in st.session_state:
load_data()
data = st.session_state.data
if task.startswith("text") and isinstance(data, pd.DataFrame):
data = data.values.tolist()
try:
file_name = tmp_path / "model.skops"
sio.dump(st.session_state.model, file_name)
hub_utils.init(
model=file_name,
dst=path,
task=task,
data=data,
requirements=requirements,
)
1
except Exception as exc:
print("Uh oh, something went wrong when initializing the repo:", exc)
def create_skops_model_card() -> None:
init_repo(hf_path)
metadata = card.metadata_from_config(hf_path)
model_card = card.Card(model=st.session_state.model, metadata=metadata)
st.session_state.model_card = model_card
st.session_state.model_card_type = "skops"
def create_empty_model_card() -> None:
init_repo(hf_path)
metadata = card.metadata_from_config(hf_path)
model_card = card.Card(
model=st.session_state.model, metadata=metadata, template=None
)
model_card.add(**{"Untitled": "[More Information Needed]"})
st.session_state.model_card = model_card
st.session_state.model_card_type = "empty"
def create_hf_model_card() -> None:
repo_id = st.session_state.get("hf_repo_id", "").strip("'").strip('"')
if not repo_id:
return
print("downloading model card")
path = hf_hub_download(repo_id, "README.md")
model_card = card.parse_modelcard(path)
st.session_state.model_card = model_card
st.session_state.model_card_type = "loaded"
def start_input_form():
if "model" not in st.session_state:
st.session_state.model = DummyClassifier()
if "data" not in st.session_state:
st.session_state.data = pd.DataFrame([])
if "model_card" not in st.session_state:
st.session_state.model_card = None
st.markdown(description)
st.markdown("---")
st.text(
"Upload an sklearn model (strongly recommended)\n"
"The model can be used to automatically populate fields in the model card."
)
st.file_uploader("Upload a model*", on_change=load_model, key="model_file")
st.markdown("---")
st.text(
"Upload samples from your data (in csv format)\n"
"This sample data can be attached to the metadata of the model card"
)
st.file_uploader(
"Upload X data (csv)*", type=["csv"], on_change=load_data, key="data_file"
)
st.markdown("---")
st.selectbox(
label="Choose the task type*",
options=[
"tabular-classification",
"tabular-regression",
"text-classification",
"text-regression",
],
key="task",
on_change=init_repo,
args=(hf_path,),
)
st.markdown("---")
st.text_area(
label="Requirements*",
value=f"scikit-learn=={sklearn.__version__}\n",
key="requirements",
on_change=init_repo,
args=(hf_path,),
)
st.markdown("---")
st.markdown("Choose one of the options below to get started:")
col_0, col_1, col_2 = st.columns([2, 2, 2])
with col_0:
st.button("Create a new skops model card", on_click=create_skops_model_card)
with col_1:
st.button("Create a new empty model card", on_click=create_empty_model_card)
with col_2:
with st.form("Load existing model card from HF Hub", clear_on_submit=False):
st.text_input("Repo name (e.g. 'gpt2')", key="hf_repo_id")
st.form_submit_button("Load", on_click=create_hf_model_card)
start_input_form()
|