import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas_datareader.data as web import datetime as dt import yfinance as yf from sklearn.preprocessing import MinMaxScaler from keras.models import load_model import streamlit as st import streamlit as st import plotly.graph_objects as go import base64 import plotly.express as px from datetime import datetime st.set_page_config(page_title='Regression Stocks Prediction', layout='wide', page_icon=':rocket:') #this is the header t1, t2 = st.columns((0.07,1)) t2.title("Stock Price Analysis and Prediction Using LSTM") t2.markdown("Created by Bayhaqy") t2.markdown("Using Dataset MAPI to Train and Test the Model") # Add a dictonary of stock tickers and their company names and make a drop down menu to select the stock to predict stock_tickers = { "MAPI":"MAPI.JK","MAP Aktif": "MAPA.JK","MAP Boga": "MAPB.JK", "Tesla": "TSLA", "Apple": "AAPL", "Microsoft": "MSFT", "Google": "GOOGL", "Facebook": "FB", "Amazon": "AMZN", "Netflix": "NFLX", "Alphabet": "GOOG", "Nvidia": "NVDA", "Paypal": "PYPL", "Adobe": "ADBE", "Intel": "INTC", "Cisco": "CSCO", "Comcast": "CMCSA", "Pepsi": "PEP", "Costco": "COST", "Starbucks": "SBUX", "Walmart": "WMT", "Disney": "DIS", "Visa": "V", "Mastercard": "MA", "Boeing": "BA", "IBM": "IBM", "McDonalds": "MCD", "Nike": "NKE", "Exxon": "XOM", "Chevron": "CVX", "Verizon": "VZ", "AT&T": "T", "Home Depot": "HD", "Salesforce": "CRM", "Oracle": "ORCL", "Qualcomm": "QCOM", "AMD": "AMD" } st.sidebar.title("Stock Option") # Custom CSS to change the sidebar color sidebar_css = """ """ # User Input default_index = stock_tickers.keys().index("MAPI.JK") if "MAPI.JK" in stock_tickers.keys() else 0 #st.markdown(sidebar_css, unsafe_allow_html=True) user_input = st.sidebar.selectbox("Select a Stock", list(stock_tickers.keys()), index=default_index , key="main_selectbox") stock_name = user_input user_input = stock_tickers[user_input] # User input for start and end dates using calendar widget start_date = st.sidebar.date_input("Select start date:", datetime(2010, 1, 1)) end_date = st.sidebar.date_input("Select end date:", datetime(2023, 1, 1)) # End of User Input # Enhanced title with larger font size and a different color title = f"

{stock_name}'s Stock Analysis

" st.markdown(title, unsafe_allow_html=True) # Describing the data st.subheader(f'Data from {start_date} - {end_date}') data = yf.download(user_input, start_date, end_date) # Reset the index to add the date column data = data.reset_index() # Display data in a Plotly table fig = go.Figure(data=[go.Table( header=dict(values=list(data.columns), font=dict(size=12, color='white'), fill_color='#264653', line_color='rgba(255,255,255,0.2)', align=['left', 'center'], height=20), cells=dict(values=[data[k].tolist() for k in data.columns], font=dict(size=12), align=['left', 'center'], line_color='rgba(255,255,255,0.2)', height=20))]) fig.update_layout(title_text=f"Data for {stock_name}", title_font_color='#264653', title_x=0, margin=dict(l=0, r=10, b=10, t=30)) st.plotly_chart(fig, use_container_width=True) st.markdown(f"

Data Overview for {stock_name}

", unsafe_allow_html=True) # Get the description of the data description = data.describe() # Dictionary of columns and rows to highlight highlight_dict = { "Open": ["mean", "min", "max", "std"], "High": ["mean", "min", "max", "std"], "Low": ["mean", "min", "max", "std"], "Close": ["mean", "min", "max", "std"], "Adj Close": ["mean", "min", "max", "std"] } # Colors for specific rows color_dict = { "mean": "lightgreen", "min": "salmon", "max": "lightblue", "std": "lightyellow" } # Function to highlight specific columns and rows based on the dictionaries def highlight_specific_cells(val, col_name, row_name): if col_name in highlight_dict and row_name in highlight_dict[col_name]: return f'background-color: {color_dict[row_name]}' return '' styled_description = description.style.apply(lambda row: [highlight_specific_cells(val, col, row.name) for col, val in row.items()], axis=1) # Display the styled table in Streamlit st.table(styled_description) ### ............................................... ## # Stock Price Over Time g1, g2, g3 = st.columns((1.2,1.2,1)) fig1 = px.line(data, x='Date', y='Close', template='seaborn') fig1.update_traces(line_color='#264653') fig1.update_layout(title_text="Stock Price Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700) g1.plotly_chart(fig1, use_container_width=True) # Volume of Stocks Traded Over Time fig2 = px.bar(data, x='Date', y='Volume', template='seaborn') fig2.update_traces(marker_color='#7A9E9F') fig2.update_layout(title_text="Volume of Stocks Traded Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700) g2.plotly_chart(fig2, use_container_width=True) # Moving Averages short_window = 40 long_window = 100 data['Short_MA'] = data['Close'].rolling(window=short_window).mean() data['Long_MA'] = data['Close'].rolling(window=long_window).mean() fig3 = px.line(data, x='Date', y='Close', template='seaborn') fig3.add_scatter(x=data['Date'], y=data['Short_MA'], mode='lines', line=dict(color="red"), name=f'Short {short_window}D MA') fig3.add_scatter(x=data['Date'], y=data['Long_MA'], mode='lines', line=dict(color="blue"), name=f'Long {long_window}D MA') fig3.update_layout(title_text="Stock Price with Moving Averages", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, legend=dict(orientation="h", yanchor="bottom", y=0.9, xanchor="right", x=0.99), height=400, width=700) g3.plotly_chart(fig3, use_container_width=True) ## ............................................... ## # Daily Returns g4, g5, g6 = st.columns((1,1,1)) data['Daily_Returns'] = data['Close'].pct_change() fig4 = px.line(data, x='Date', y='Daily_Returns', template='seaborn') fig4.update_traces(line_color='#E76F51') fig4.update_layout(title_text="Daily Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g4.plotly_chart(fig4, use_container_width=True) # Cumulative Returns data['Cumulative_Returns'] = (1 + data['Daily_Returns']).cumprod() fig5 = px.line(data, x='Date', y='Cumulative_Returns', template='seaborn') fig5.update_traces(line_color='#2A9D8F') fig5.update_layout(title_text="Cumulative Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g5.plotly_chart(fig5, use_container_width=True) # Stock Price Distribution fig6 = px.histogram(data, x='Close', template='seaborn', nbins=50) fig6.update_traces(marker_color='#F4A261') fig6.update_layout(title_text="Stock Price Distribution", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g6.plotly_chart(fig6, use_container_width=True) ## ............................................... ## # Bollinger Bands g7, g8, g9 = st.columns((1,1,1)) rolling_mean = data['Close'].rolling(window=20).mean() rolling_std = data['Close'].rolling(window=20).std() data['Bollinger_Upper'] = rolling_mean + (rolling_std * 2) data['Bollinger_Lower'] = rolling_mean - (rolling_std * 2) fig7 = px.line(data, x='Date', y='Close', template='seaborn') fig7.add_scatter(x=data['Date'], y=data['Bollinger_Upper'], mode='lines', line=dict(color="green"), name='Upper Bollinger Band') fig7.add_scatter(x=data['Date'], y=data['Bollinger_Lower'], mode='lines', line=dict(color="red"), name='Lower Bollinger Band') fig7.update_layout(title_text="Bollinger Bands", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g7.plotly_chart(fig7, use_container_width=True) # Stock Price vs. Volume fig8 = px.line(data, x='Date', y='Close', template='seaborn') fig8.add_bar(x=data['Date'], y=data['Volume'], name='Volume') fig8.update_layout(title_text="Stock Price vs. Volume", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g8.plotly_chart(fig8, use_container_width=True) # MACD data['12D_EMA'] = data['Close'].ewm(span=12, adjust=False).mean() data['26D_EMA'] = data['Close'].ewm(span=26, adjust=False).mean() data['MACD'] = data['12D_EMA'] - data['26D_EMA'] data['Signal_Line'] = data['MACD'].ewm(span=9, adjust=False).mean() fig9 = px.line(data, x='Date', y='MACD', template='seaborn', title="MACD") fig9.add_scatter(x=data['Date'], y=data['Signal_Line'], mode='lines', line=dict(color="orange"), name='Signal Line') fig9.update_layout(title_text="MACD", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g9.plotly_chart(fig9, use_container_width=True) ### ............................................... ## # Relative Strength Index (RSI) g10, g11, g12 = st.columns((1,1,1)) delta = data['Close'].diff() gain = (delta.where(delta > 0, 0)).fillna(0) loss = (-delta.where(delta < 0, 0)).fillna(0) avg_gain = gain.rolling(window=14).mean() avg_loss = loss.rolling(window=14).mean() rs = avg_gain / avg_loss data['RSI'] = 100 - (100 / (1 + rs)) fig10 = px.line(data, x='Date', y='RSI', template='seaborn') fig10.update_layout(title_text="Relative Strength Index (RSI)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g10.plotly_chart(fig10, use_container_width=True) # Candlestick Chart fig11 = go.Figure(data=[go.Candlestick(x=data['Date'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'])]) fig11.update_layout(title_text="Candlestick Chart", title_x=0, margin=dict(l=0, r=10, b=10, t=30)) g11.plotly_chart(fig11, use_container_width=True) # Correlation Matrix corr_matrix = data[['Open', 'High', 'Low', 'Close', 'Volume']].corr() fig12 = px.imshow(corr_matrix, template='seaborn') fig12.update_layout(title_text="Correlation Matrix", title_x=0, margin=dict(l=0, r=10, b=10, t=30)) g12.plotly_chart(fig12, use_container_width=True) ### ............................................... ## # Price Rate of Change (ROC) g13, g14, g15 = st.columns((1,1,1)) n = 12 data['ROC'] = ((data['Close'] - data['Close'].shift(n)) / data['Close'].shift(n)) * 100 fig13 = px.line(data, x='Date', y='ROC', template='seaborn') fig13.update_layout(title_text="Price Rate of Change (ROC)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g13.plotly_chart(fig13, use_container_width=True) # Stochastic Oscillator low_min = data['Low'].rolling(window=14).min() high_max = data['High'].rolling(window=14).max() data['%K'] = (100 * (data['Close'] - low_min) / (high_max - low_min)) data['%D'] = data['%K'].rolling(window=3).mean() fig14 = px.line(data, x='Date', y='%K', template='seaborn') fig14.add_scatter(x=data['Date'], y=data['%D'], mode='lines', line=dict(color="orange"), name='%D (3-day SMA of %K)') fig14.update_layout(title_text="Stochastic Oscillator", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g14.plotly_chart(fig14, use_container_width=True) # Historical Volatility data['Log_Return'] = np.log(data['Close'] / data['Close'].shift(1)) data['Historical_Volatility'] = data['Log_Return'].rolling(window=252).std() * np.sqrt(252) fig15 = px.line(data, x='Date', y='Historical_Volatility', template='seaborn') fig15.update_layout(title_text="Historical Volatility (252-day)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) g15.plotly_chart(fig15, use_container_width=True) ### ............................................... ## # Visualizing the data and want to get the data when hovering over the graph st.subheader('Closing Price vs Time Chart') fig1 = go.Figure() fig1.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close')) fig1.layout.update(hovermode='x') # Display the figure in Streamlit st.plotly_chart(fig1,use_container_width=True) st.subheader('Closing Price vs Time Chart with 100MA') ma100 = data['Close'].rolling(100).mean() fig2 = go.Figure() # Add traces for 100MA and Closing Price fig2.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA')) fig2.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price')) fig2.layout.update(hovermode='x') # Display the figure in Streamlit st.plotly_chart(fig2,use_container_width=True) st.subheader('Closing Price vs Time Chart with 100MA and 200MA') ma100 = data['Close'].rolling(100).mean() ma200 = data['Close'].rolling(200).mean() fig3 = go.Figure() # Add traces for 100MA and Closing Price fig3.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA')) fig3.add_trace(go.Scatter(x=data.index, y=ma200, mode='lines', name='200MA')) fig3.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price')) fig3.layout.update(hovermode='x') # Display the figure in Streamlit st.plotly_chart(fig3,use_container_width=True) # Splitting the data into training and testing data data_training = pd.DataFrame(data['Close'][0:int(len(data)*0.70)]) data_testing = pd.DataFrame(data['Close'][int(len(data)*0.70): int(len(data))]) # Scaling the data scaler = MinMaxScaler(feature_range=(0,1)) data_training_array = scaler.fit_transform(data_training) # load the model model = load_model('best_model_MAPI.h5') # Testing the model past_100_days = data_training.tail(100) final_df = pd.concat([past_100_days,data_testing], ignore_index=True) input_data = scaler.fit_transform(final_df) x_test = [] y_test = [] for i in range(100, input_data.shape[0]): x_test.append(input_data[i-100:i]) y_test.append(input_data[i,0]) x_test, y_test = np.array(x_test), np.array(y_test) y_predicted = model.predict(x_test) scaler = scaler.scale_ scale_factor = 1/scaler[0] y_predicted = y_predicted * scale_factor y_test = y_test * scale_factor # Visualizing the results st.subheader('Predictions vs Actual') fig4 = go.Figure() # Add traces for Actual and Predicted Price fig4.add_trace(go.Scatter(x=data.index[-len(y_test):], y=y_test, mode='lines', name='Actual Price')) fig4.add_trace(go.Scatter(x=data.index[-len(y_predicted):], y=y_predicted[:,0], mode='lines', name='Predicted Price')) fig4.layout.update(hovermode='x') # Display the figure in Streamlit st.plotly_chart(fig4,use_container_width=True) st.sidebar.markdown("----") st.sidebar.markdown("© 2023 Stocks Prediction App")