Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas_datareader.data as web | |
import datetime as dt | |
import yfinance as yf | |
from sklearn.preprocessing import MinMaxScaler | |
from keras.models import load_model | |
import streamlit as st | |
import streamlit as st | |
import plotly.graph_objects as go | |
import base64 | |
import plotly.express as px | |
from datetime import datetime | |
st.set_page_config(page_title='Regression Stocks Prediction', layout='wide', page_icon=':rocket:') | |
#this is the header | |
t1, t2 = st.columns((0.07,1)) | |
t2.title("Stock Price Analysis and Prediction Using LSTM") | |
t2.markdown("Created by Bayhaqy") | |
t2.markdown("Using Dataset MAPI to Train and Test the Model") | |
# Add a dictonary of stock tickers and their company names and make a drop down menu to select the stock to predict | |
stock_tickers = { | |
"MAPI":"MAPI.JK","MAP Aktif": "MAPA.JK","MAP Boga": "MAPB.JK", | |
"Tesla": "TSLA", "Apple": "AAPL", "Microsoft": "MSFT", "Google": "GOOGL", | |
"Facebook": "FB", "Amazon": "AMZN", "Netflix": "NFLX", "Alphabet": "GOOG", | |
"Nvidia": "NVDA", "Paypal": "PYPL", "Adobe": "ADBE", "Intel": "INTC", | |
"Cisco": "CSCO", "Comcast": "CMCSA", "Pepsi": "PEP", "Costco": "COST", | |
"Starbucks": "SBUX", "Walmart": "WMT", "Disney": "DIS", "Visa": "V", | |
"Mastercard": "MA", "Boeing": "BA", "IBM": "IBM", "McDonalds": "MCD", | |
"Nike": "NKE", "Exxon": "XOM", "Chevron": "CVX", "Verizon": "VZ", | |
"AT&T": "T", "Home Depot": "HD", "Salesforce": "CRM", "Oracle": "ORCL", | |
"Qualcomm": "QCOM", "AMD": "AMD" | |
} | |
st.sidebar.title("Stock Option") | |
# Custom CSS to change the sidebar color | |
sidebar_css = """ | |
<style> | |
div[data-testid="stSidebar"] > div:first-child { | |
width: 350px; # Adjust the width as needed | |
background-color: #FF6969; | |
} | |
</style> | |
""" | |
# User Input | |
default_index = stock_tickers.keys().index("MAPI.JK") if "MAPI.JK" in stock_tickers.keys() else 0 | |
#st.markdown(sidebar_css, unsafe_allow_html=True) | |
user_input = st.sidebar.selectbox("Select a Stock", list(stock_tickers.keys()), index=default_index , key="main_selectbox") | |
stock_name = user_input | |
user_input = stock_tickers[user_input] | |
# User input for start and end dates using calendar widget | |
start_date = st.sidebar.date_input("Select start date:", datetime(2010, 1, 1)) | |
end_date = st.sidebar.date_input("Select end date:", datetime(2023, 1, 1)) | |
# End of User Input | |
# Enhanced title with larger font size and a different color | |
title = f"<h1 style='color: red; font-size: 25px; text-align: center; '>{stock_name}'s Stock Analysis</h1>" | |
st.markdown(title, unsafe_allow_html=True) | |
# Describing the data | |
st.subheader(f'Data from {start_date} - {end_date}') | |
data = yf.download(user_input, start_date, end_date) | |
# Reset the index to add the date column | |
data = data.reset_index() | |
# Display data in a Plotly table | |
fig = go.Figure(data=[go.Table( | |
header=dict(values=list(data.columns), | |
font=dict(size=12, color='white'), | |
fill_color='#264653', | |
line_color='rgba(255,255,255,0.2)', | |
align=['left', 'center'], | |
height=20), | |
cells=dict(values=[data[k].tolist() for k in data.columns], | |
font=dict(size=12), | |
align=['left', 'center'], | |
line_color='rgba(255,255,255,0.2)', | |
height=20))]) | |
fig.update_layout(title_text=f"Data for {stock_name}", title_font_color='#264653', title_x=0, margin=dict(l=0, r=10, b=10, t=30)) | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown(f"<h2 style='text-align: center; color: #264653;'>Data Overview for {stock_name}</h2>", unsafe_allow_html=True) | |
# Get the description of the data | |
description = data.describe() | |
# Dictionary of columns and rows to highlight | |
highlight_dict = { | |
"Open": ["mean", "min", "max", "std"], | |
"High": ["mean", "min", "max", "std"], | |
"Low": ["mean", "min", "max", "std"], | |
"Close": ["mean", "min", "max", "std"], | |
"Adj Close": ["mean", "min", "max", "std"] | |
} | |
# Colors for specific rows | |
color_dict = { | |
"mean": "lightgreen", | |
"min": "salmon", | |
"max": "lightblue", | |
"std": "lightyellow" | |
} | |
# Function to highlight specific columns and rows based on the dictionaries | |
def highlight_specific_cells(val, col_name, row_name): | |
if col_name in highlight_dict and row_name in highlight_dict[col_name]: | |
return f'background-color: {color_dict[row_name]}' | |
return '' | |
styled_description = description.style.apply(lambda row: [highlight_specific_cells(val, col, row.name) for col, val in row.items()], axis=1) | |
# Display the styled table in Streamlit | |
st.table(styled_description) | |
### ............................................... ## | |
# Stock Price Over Time | |
g1, g2, g3 = st.columns((1.2,1.2,1)) | |
fig1 = px.line(data, x='Date', y='Close', template='seaborn') | |
fig1.update_traces(line_color='#264653') | |
fig1.update_layout(title_text="Stock Price Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700) | |
g1.plotly_chart(fig1, use_container_width=True) | |
# Volume of Stocks Traded Over Time | |
fig2 = px.bar(data, x='Date', y='Volume', template='seaborn') | |
fig2.update_traces(marker_color='#7A9E9F') | |
fig2.update_layout(title_text="Volume of Stocks Traded Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700) | |
g2.plotly_chart(fig2, use_container_width=True) | |
# Moving Averages | |
short_window = 40 | |
long_window = 100 | |
data['Short_MA'] = data['Close'].rolling(window=short_window).mean() | |
data['Long_MA'] = data['Close'].rolling(window=long_window).mean() | |
fig3 = px.line(data, x='Date', y='Close', template='seaborn') | |
fig3.add_scatter(x=data['Date'], y=data['Short_MA'], mode='lines', line=dict(color="red"), name=f'Short {short_window}D MA') | |
fig3.add_scatter(x=data['Date'], y=data['Long_MA'], mode='lines', line=dict(color="blue"), name=f'Long {long_window}D MA') | |
fig3.update_layout(title_text="Stock Price with Moving Averages", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, legend=dict(orientation="h", yanchor="bottom", y=0.9, xanchor="right", x=0.99), height=400, width=700) | |
g3.plotly_chart(fig3, use_container_width=True) | |
## ............................................... ## | |
# Daily Returns | |
g4, g5, g6 = st.columns((1,1,1)) | |
data['Daily_Returns'] = data['Close'].pct_change() | |
fig4 = px.line(data, x='Date', y='Daily_Returns', template='seaborn') | |
fig4.update_traces(line_color='#E76F51') | |
fig4.update_layout(title_text="Daily Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g4.plotly_chart(fig4, use_container_width=True) | |
# Cumulative Returns | |
data['Cumulative_Returns'] = (1 + data['Daily_Returns']).cumprod() | |
fig5 = px.line(data, x='Date', y='Cumulative_Returns', template='seaborn') | |
fig5.update_traces(line_color='#2A9D8F') | |
fig5.update_layout(title_text="Cumulative Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g5.plotly_chart(fig5, use_container_width=True) | |
# Stock Price Distribution | |
fig6 = px.histogram(data, x='Close', template='seaborn', nbins=50) | |
fig6.update_traces(marker_color='#F4A261') | |
fig6.update_layout(title_text="Stock Price Distribution", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g6.plotly_chart(fig6, use_container_width=True) | |
## ............................................... ## | |
# Bollinger Bands | |
g7, g8, g9 = st.columns((1,1,1)) | |
rolling_mean = data['Close'].rolling(window=20).mean() | |
rolling_std = data['Close'].rolling(window=20).std() | |
data['Bollinger_Upper'] = rolling_mean + (rolling_std * 2) | |
data['Bollinger_Lower'] = rolling_mean - (rolling_std * 2) | |
fig7 = px.line(data, x='Date', y='Close', template='seaborn') | |
fig7.add_scatter(x=data['Date'], y=data['Bollinger_Upper'], mode='lines', line=dict(color="green"), name='Upper Bollinger Band') | |
fig7.add_scatter(x=data['Date'], y=data['Bollinger_Lower'], mode='lines', line=dict(color="red"), name='Lower Bollinger Band') | |
fig7.update_layout(title_text="Bollinger Bands", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g7.plotly_chart(fig7, use_container_width=True) | |
# Stock Price vs. Volume | |
fig8 = px.line(data, x='Date', y='Close', template='seaborn') | |
fig8.add_bar(x=data['Date'], y=data['Volume'], name='Volume') | |
fig8.update_layout(title_text="Stock Price vs. Volume", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g8.plotly_chart(fig8, use_container_width=True) | |
# MACD | |
data['12D_EMA'] = data['Close'].ewm(span=12, adjust=False).mean() | |
data['26D_EMA'] = data['Close'].ewm(span=26, adjust=False).mean() | |
data['MACD'] = data['12D_EMA'] - data['26D_EMA'] | |
data['Signal_Line'] = data['MACD'].ewm(span=9, adjust=False).mean() | |
fig9 = px.line(data, x='Date', y='MACD', template='seaborn', title="MACD") | |
fig9.add_scatter(x=data['Date'], y=data['Signal_Line'], mode='lines', line=dict(color="orange"), name='Signal Line') | |
fig9.update_layout(title_text="MACD", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g9.plotly_chart(fig9, use_container_width=True) | |
### ............................................... ## | |
# Relative Strength Index (RSI) | |
g10, g11, g12 = st.columns((1,1,1)) | |
delta = data['Close'].diff() | |
gain = (delta.where(delta > 0, 0)).fillna(0) | |
loss = (-delta.where(delta < 0, 0)).fillna(0) | |
avg_gain = gain.rolling(window=14).mean() | |
avg_loss = loss.rolling(window=14).mean() | |
rs = avg_gain / avg_loss | |
data['RSI'] = 100 - (100 / (1 + rs)) | |
fig10 = px.line(data, x='Date', y='RSI', template='seaborn') | |
fig10.update_layout(title_text="Relative Strength Index (RSI)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g10.plotly_chart(fig10, use_container_width=True) | |
# Candlestick Chart | |
fig11 = go.Figure(data=[go.Candlestick(x=data['Date'], | |
open=data['Open'], | |
high=data['High'], | |
low=data['Low'], | |
close=data['Close'])]) | |
fig11.update_layout(title_text="Candlestick Chart", title_x=0, margin=dict(l=0, r=10, b=10, t=30)) | |
g11.plotly_chart(fig11, use_container_width=True) | |
# Correlation Matrix | |
corr_matrix = data[['Open', 'High', 'Low', 'Close', 'Volume']].corr() | |
fig12 = px.imshow(corr_matrix, template='seaborn') | |
fig12.update_layout(title_text="Correlation Matrix", title_x=0, margin=dict(l=0, r=10, b=10, t=30)) | |
g12.plotly_chart(fig12, use_container_width=True) | |
### ............................................... ## | |
# Price Rate of Change (ROC) | |
g13, g14, g15 = st.columns((1,1,1)) | |
n = 12 | |
data['ROC'] = ((data['Close'] - data['Close'].shift(n)) / data['Close'].shift(n)) * 100 | |
fig13 = px.line(data, x='Date', y='ROC', template='seaborn') | |
fig13.update_layout(title_text="Price Rate of Change (ROC)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g13.plotly_chart(fig13, use_container_width=True) | |
# Stochastic Oscillator | |
low_min = data['Low'].rolling(window=14).min() | |
high_max = data['High'].rolling(window=14).max() | |
data['%K'] = (100 * (data['Close'] - low_min) / (high_max - low_min)) | |
data['%D'] = data['%K'].rolling(window=3).mean() | |
fig14 = px.line(data, x='Date', y='%K', template='seaborn') | |
fig14.add_scatter(x=data['Date'], y=data['%D'], mode='lines', line=dict(color="orange"), name='%D (3-day SMA of %K)') | |
fig14.update_layout(title_text="Stochastic Oscillator", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g14.plotly_chart(fig14, use_container_width=True) | |
# Historical Volatility | |
data['Log_Return'] = np.log(data['Close'] / data['Close'].shift(1)) | |
data['Historical_Volatility'] = data['Log_Return'].rolling(window=252).std() * np.sqrt(252) | |
fig15 = px.line(data, x='Date', y='Historical_Volatility', template='seaborn') | |
fig15.update_layout(title_text="Historical Volatility (252-day)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None) | |
g15.plotly_chart(fig15, use_container_width=True) | |
### ............................................... ## | |
# Visualizing the data and want to get the data when hovering over the graph | |
st.subheader('Closing Price vs Time Chart') | |
fig1 = go.Figure() | |
fig1.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close')) | |
fig1.layout.update(hovermode='x') | |
# Display the figure in Streamlit | |
st.plotly_chart(fig1,use_container_width=True) | |
st.subheader('Closing Price vs Time Chart with 100MA') | |
ma100 = data['Close'].rolling(100).mean() | |
fig2 = go.Figure() | |
# Add traces for 100MA and Closing Price | |
fig2.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA')) | |
fig2.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price')) | |
fig2.layout.update(hovermode='x') | |
# Display the figure in Streamlit | |
st.plotly_chart(fig2,use_container_width=True) | |
st.subheader('Closing Price vs Time Chart with 100MA and 200MA') | |
ma100 = data['Close'].rolling(100).mean() | |
ma200 = data['Close'].rolling(200).mean() | |
fig3 = go.Figure() | |
# Add traces for 100MA and Closing Price | |
fig3.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA')) | |
fig3.add_trace(go.Scatter(x=data.index, y=ma200, mode='lines', name='200MA')) | |
fig3.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price')) | |
fig3.layout.update(hovermode='x') | |
# Display the figure in Streamlit | |
st.plotly_chart(fig3,use_container_width=True) | |
# Splitting the data into training and testing data | |
data_training = pd.DataFrame(data['Close'][0:int(len(data)*0.70)]) | |
data_testing = pd.DataFrame(data['Close'][int(len(data)*0.70): int(len(data))]) | |
# Scaling the data | |
scaler = MinMaxScaler(feature_range=(0,1)) | |
data_training_array = scaler.fit_transform(data_training) | |
# load the model | |
model = load_model('best_model_MAPI.h5') | |
# Testing the model | |
past_100_days = data_training.tail(100) | |
final_df = pd.concat([past_100_days,data_testing], ignore_index=True) | |
input_data = scaler.fit_transform(final_df) | |
x_test = [] | |
y_test = [] | |
for i in range(100, input_data.shape[0]): | |
x_test.append(input_data[i-100:i]) | |
y_test.append(input_data[i,0]) | |
x_test, y_test = np.array(x_test), np.array(y_test) | |
y_predicted = model.predict(x_test) | |
scaler = scaler.scale_ | |
scale_factor = 1/scaler[0] | |
y_predicted = y_predicted * scale_factor | |
y_test = y_test * scale_factor | |
# Visualizing the results | |
st.subheader('Predictions vs Actual') | |
fig4 = go.Figure() | |
# Add traces for Actual and Predicted Price | |
fig4.add_trace(go.Scatter(x=data.index[-len(y_test):], y=y_test, mode='lines', name='Actual Price')) | |
fig4.add_trace(go.Scatter(x=data.index[-len(y_predicted):], y=y_predicted[:,0], mode='lines', name='Predicted Price')) | |
fig4.layout.update(hovermode='x') | |
# Display the figure in Streamlit | |
st.plotly_chart(fig4,use_container_width=True) | |
st.sidebar.markdown("----") | |
st.sidebar.markdown("© 2023 Stocks Prediction App") |