Upload News_Scrapping.py
Browse files- pages/News_Scrapping.py +165 -0
pages/News_Scrapping.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from newspaper import Article, Config
|
4 |
+
from langdetect import detect
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
from deep_translator import GoogleTranslator
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
import logging
|
10 |
+
from gnews import GNews
|
11 |
+
import nltk
|
12 |
+
nltk.download('punkt')
|
13 |
+
|
14 |
+
## ............................................... ##
|
15 |
+
# Set page configuration (Call this once and make changes as needed)
|
16 |
+
st.set_page_config(page_title='News Scrapping', layout='wide', page_icon=':rocket:')
|
17 |
+
|
18 |
+
## ............................................... ##
|
19 |
+
# Set up logging
|
20 |
+
logging.basicConfig(filename='news_processing.log', level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
+
|
22 |
+
# Initialize the DataFrame
|
23 |
+
df = pd.DataFrame(columns=['Publish_Date', 'Language', 'URL', 'Title', 'Authors', 'Keywords', 'Summary', 'Text', 'Translate', 'Status', 'Sentiment'])
|
24 |
+
|
25 |
+
## ............................................... ##
|
26 |
+
# Function for translation
|
27 |
+
def translate_text(text, source='auto', target='en'):
|
28 |
+
try:
|
29 |
+
if source != target:
|
30 |
+
text = GoogleTranslator(source=source, target=target).translate(text)
|
31 |
+
return text
|
32 |
+
except Exception as e:
|
33 |
+
logging.error(f"Translation error: {str(e)}")
|
34 |
+
return text
|
35 |
+
|
36 |
+
# Function for sentiment analysis
|
37 |
+
def predict_sentiment(text, model, tokenizer):
|
38 |
+
try:
|
39 |
+
tokens_info = tokenizer(text, truncation=True, return_tensors="pt")
|
40 |
+
with torch.no_grad():
|
41 |
+
raw_predictions = model(**tokens_info).logits
|
42 |
+
|
43 |
+
predicted_class_id = raw_predictions.argmax().item()
|
44 |
+
predict = model.config.id2label[predicted_class_id]
|
45 |
+
|
46 |
+
softmaxed = int(torch.nn.functional.softmax(raw_predictions[0], dim=0)[1] * 100)
|
47 |
+
|
48 |
+
if (softmaxed > 70):
|
49 |
+
status = 'Not trust'
|
50 |
+
elif (softmaxed > 40):
|
51 |
+
status = 'Not sure'
|
52 |
+
else:
|
53 |
+
status = 'Trust'
|
54 |
+
|
55 |
+
return status, predict
|
56 |
+
except Exception as e:
|
57 |
+
logging.error(f"Sentiment analysis error: {str(e)}")
|
58 |
+
return 'N/A', 'N/A'
|
59 |
+
|
60 |
+
def get_models_and_tokenizers():
|
61 |
+
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
|
62 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
63 |
+
model.eval()
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
+
|
66 |
+
return model, tokenizer
|
67 |
+
|
68 |
+
# Function to process an article
|
69 |
+
def process_article(url, config):
|
70 |
+
try:
|
71 |
+
article = Article(url=url, config=config)
|
72 |
+
article.download()
|
73 |
+
article.parse()
|
74 |
+
|
75 |
+
# Get the article data
|
76 |
+
title = article.title
|
77 |
+
authors = article.authors
|
78 |
+
|
79 |
+
publish_date = article.publish_date
|
80 |
+
|
81 |
+
# Check if publish_date is not None before accessing 'value'
|
82 |
+
if publish_date is not None:
|
83 |
+
publish_date = publish_date.strftime('%Y-%m-%d %H:%M:%S%z')
|
84 |
+
else:
|
85 |
+
publish_date = 'N/A'
|
86 |
+
|
87 |
+
text = article.text
|
88 |
+
article.nlp()
|
89 |
+
keywords = article.keywords
|
90 |
+
summary = article.summary
|
91 |
+
|
92 |
+
concated_text = title + '| ' + summary
|
93 |
+
language = detect(concated_text)
|
94 |
+
tl = translate_text(concated_text, source=language, target='en')
|
95 |
+
status, predict = predict_sentiment(tl, model, tokenizer)
|
96 |
+
|
97 |
+
return publish_date, language, url, title, authors, keywords, summary, text, tl, status, predict
|
98 |
+
except Exception as e:
|
99 |
+
logging.error(f"Article processing error: {str(e)}")
|
100 |
+
return 'N/A', 'N/A', url, 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A', 'N/A'
|
101 |
+
|
102 |
+
## ............................................... ##
|
103 |
+
# Initialize Streamlit app
|
104 |
+
st.title('News Article Scrapping')
|
105 |
+
st.write("Created by Bayhaqy")
|
106 |
+
|
107 |
+
## ............................................... ##
|
108 |
+
# Input search parameters
|
109 |
+
search_term = st.text_input('Enter a search term:', 'palestina')
|
110 |
+
max_results = st.number_input('Maximum number of results:', min_value=1, value=10)
|
111 |
+
country = st.text_input('Country:', 'Indonesia')
|
112 |
+
language = st.text_input('Language:', 'indonesian')
|
113 |
+
start_date = st.date_input('Start Date', pd.to_datetime('2023-09-01'))
|
114 |
+
|
115 |
+
# Create a variable to track whether the data has been processed
|
116 |
+
data_processed = False
|
117 |
+
|
118 |
+
# Fetch news and process articles
|
119 |
+
if st.button('Fetch and Process News'):
|
120 |
+
|
121 |
+
# Your news retrieval code
|
122 |
+
google_news = GNews()
|
123 |
+
|
124 |
+
google_news.max_results = max_results
|
125 |
+
google_news.country = country
|
126 |
+
google_news.language = language
|
127 |
+
google_news.start_date = (start_date.year, start_date.month, start_date.day)
|
128 |
+
|
129 |
+
news = google_news.get_news(search_term)
|
130 |
+
|
131 |
+
# Initialize your model and tokenizer
|
132 |
+
model, tokenizer = get_models_and_tokenizers()
|
133 |
+
|
134 |
+
# Create a custom configuration to disable SSL certificate verification
|
135 |
+
config = Config()
|
136 |
+
config.ignore_ssl = True
|
137 |
+
|
138 |
+
# Process articles
|
139 |
+
for x in news:
|
140 |
+
publish_date, language, url, title, authors, keywords, summary, text, tl, status, predict = process_article(x['url'], config)
|
141 |
+
temp_df = pd.DataFrame({'Publish_Date': [publish_date], 'Language': [language], 'URL': [url], 'Title': [title], 'Authors': [authors], 'Keywords': [keywords],
|
142 |
+
'Summary': [summary], 'Text': [text], 'Translate': [tl], 'Status': [status], 'Sentiment': [predict]})
|
143 |
+
|
144 |
+
df = pd.concat([df, temp_df], ignore_index=True)
|
145 |
+
|
146 |
+
# Set data_processed to True when the data has been successfully processed
|
147 |
+
data_processed = True
|
148 |
+
|
149 |
+
|
150 |
+
# Add a button to download the data as a CSV file
|
151 |
+
if data_processed:
|
152 |
+
st.markdown("### Download Processed Data as CSV")
|
153 |
+
st.write("Click the button below to download the processed data as a CSV file.")
|
154 |
+
|
155 |
+
# Create a downloadable link
|
156 |
+
csv_data = df.to_csv(index=False).encode()
|
157 |
+
st.download_button(
|
158 |
+
label="Download CSV",
|
159 |
+
data=csv_data,
|
160 |
+
file_name="processed_data.csv",
|
161 |
+
)
|
162 |
+
|
163 |
+
# Display processed data
|
164 |
+
if data_processed:
|
165 |
+
st.write(df.head())
|