|
import streamlit as st |
|
import json |
|
import requests |
|
import time |
|
from newspaper import Article |
|
import nltk |
|
nltk.download('punkt') |
|
|
|
|
|
c1, c2 = st.columns([0.32, 2]) |
|
|
|
with c1: |
|
st.image("images/newspaper.png", width=85) |
|
|
|
with c2: |
|
st.title("Website Article Summarize") |
|
st.markdown("**Generate summaries of articles from websites using abstractive summarization with Language Model and Library NewsPaper.**") |
|
st.caption("Created by Bayhaqy.") |
|
|
|
|
|
st.sidebar.subheader("About the app") |
|
st.sidebar.info("This app uses optional 🤗HuggingFace's Model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) \ |
|
or [pegasus_indonesian_base-finetune](https://huggingface.co/pegasus_indonesian_base-finetune) model and Library NewsPaper.") |
|
st.sidebar.write("\n\n") |
|
st.sidebar.markdown("**Get a free API key from HuggingFace:**") |
|
st.sidebar.markdown("* Create a [free account](https://huggingface.co/join) or [login](https://huggingface.co/login)") |
|
st.sidebar.markdown("* Go to **Settings** and then **Access Tokens**") |
|
st.sidebar.markdown("* Create a new Token (select 'read' role)") |
|
st.sidebar.markdown("* Paste your API key in the text box") |
|
st.sidebar.divider() |
|
st.sidebar.write("Please make sure you choose the correct model and is not behind a paywall.") |
|
st.sidebar.write("\n\n") |
|
st.sidebar.divider() |
|
|
|
|
|
st.subheader("Enter the URL of the article you want to summarize") |
|
default_url = "https://" |
|
url = st.text_input("URL:", default_url) |
|
|
|
headers_ = { |
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36' |
|
} |
|
|
|
fetch_button = st.button("Fetch article") |
|
|
|
if fetch_button: |
|
article_url = url |
|
session = requests.Session() |
|
|
|
try: |
|
response_ = session.get(article_url, headers=headers_, timeout=10) |
|
|
|
if response_.status_code == 200: |
|
|
|
with st.spinner('Fetching your article...'): |
|
time.sleep(3) |
|
st.success('Your article is ready for summarization!') |
|
|
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
|
|
title = article.title |
|
text = article.text |
|
|
|
st.divider() |
|
st.subheader("Real Article") |
|
st.markdown(f"Your article: **{title}**") |
|
st.markdown(f"**{text}**") |
|
st.divider() |
|
|
|
else: |
|
st.write("Error occurred while fetching article.") |
|
|
|
except Exception as e: |
|
st.write(f"Error occurred while fetching article: {e}") |
|
|
|
|
|
API_KEY = st.text_input("Enter your HuggingFace API key", type="password") |
|
|
|
headers = {"Authorization": f"Bearer {API_KEY}"} |
|
|
|
|
|
|
|
selected_api_url = st.selectbox("Select Model", options=["bart-large-cnn", "pegasus_indonesian_base-finetune"]) |
|
|
|
|
|
if selected_api_url == "bart-large-cnn": |
|
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Ffacebook%2Fbart-large-cnn%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
else: |
|
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fthonyyy%2Fpegasus_indonesian_base-finetune%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
|
|
submit_button = st.button("Submit to Summarize") |
|
|
|
|
|
if submit_button: |
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
article.nlp() |
|
|
|
title = article.title |
|
text = article.text |
|
html = article.html |
|
summ = article.summary |
|
|
|
|
|
def query_sum(payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
return response.json() |
|
|
|
with st.spinner('Doing some AI magic, please wait...'): |
|
time.sleep(1) |
|
|
|
|
|
output_sum = query_sum({"inputs": text, }) |
|
|
|
|
|
summary = output_sum[0]['summary_text'].replace('<n>', " ") |
|
|
|
st.divider() |
|
st.subheader("Summary AI") |
|
st.markdown(f"Your article: **{title}**") |
|
st.markdown(f"**{summary}**") |
|
|
|
st.divider() |
|
st.subheader("Summary Library NewsPaper") |
|
st.markdown(f"Your article: **{title}**") |
|
st.markdown(f"**{summ}**") |
|
|
|
st.divider() |
|
st.subheader("Real Article") |
|
st.markdown(f"Your article: **{title}**") |
|
st.markdown(f"**{text}**") |
|
|