Bayhaqy's picture
Update app.py
ce083b1
raw
history blame
4.42 kB
import streamlit as st
import json
import requests
import time
from newspaper import Article
import nltk
nltk.download('punkt')
# Page title layout
c1, c2 = st.columns([0.32, 2])
with c1:
st.image("images/newspaper.png", width=85)
with c2:
st.title("Website Article Summarize")
st.markdown("**Generate summaries of articles from websites using abstractive summarization with Language Model and Library NewsPaper.**")
st.caption("Created by Bayhaqy.")
# Sidebar content
st.sidebar.subheader("About the app")
st.sidebar.info("This app uses optional 🤗HuggingFace's Model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) \
or [pegasus_indonesian_base-finetune](https://huggingface.co/pegasus_indonesian_base-finetune) model and Library NewsPaper.")
st.sidebar.write("\n\n")
st.sidebar.markdown("**Get a free API key from HuggingFace:**")
st.sidebar.markdown("* Create a [free account](https://huggingface.co/join) or [login](https://huggingface.co/login)")
st.sidebar.markdown("* Go to **Settings** and then **Access Tokens**")
st.sidebar.markdown("* Create a new Token (select 'read' role)")
st.sidebar.markdown("* Paste your API key in the text box")
st.sidebar.divider()
st.sidebar.write("Please make sure you choose the correct model and is not behind a paywall.")
st.sidebar.write("\n\n")
st.sidebar.divider()
# Inputs
st.subheader("Enter the URL of the article you want to summarize")
default_url = "https://"
url = st.text_input("URL:", default_url)
headers_ = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'
}
fetch_button = st.button("Fetch article")
if fetch_button:
article_url = url
session = requests.Session()
try:
response_ = session.get(article_url, headers=headers_, timeout=10)
if response_.status_code == 200:
with st.spinner('Fetching your article...'):
time.sleep(3)
st.success('Your article is ready for summarization!')
article = Article(url)
article.download()
article.parse()
title = article.title
text = article.text
st.divider()
st.subheader("Real Article")
st.markdown(f"Your article: **{title}**")
st.markdown(f"**{text}**")
st.divider()
else:
st.write("Error occurred while fetching article.")
except Exception as e:
st.write(f"Error occurred while fetching article: {e}")
# HuggingFace API KEY input
API_KEY = st.text_input("Enter your HuggingFace API key", type="password")
headers = {"Authorization": f"Bearer {API_KEY}"}
# Selectbox to choose between API URLs
selected_api_url = st.selectbox("Select Model", options=["bart-large-cnn", "pegasus_indonesian_base-finetune"])
# Determine the selected Model
if selected_api_url == "bart-large-cnn":
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Ffacebook%2Fbart-large-cnn%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
else:
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fthonyyy%2Fpegasus_indonesian_base-finetune%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
submit_button = st.button("Submit to Summarize")
# Download and parse the article
if submit_button:
article = Article(url)
article.download()
article.parse()
article.nlp()
title = article.title
text = article.text
html = article.html
summ = article.summary
# HuggingFace API request function summary
def query_sum(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
with st.spinner('Doing some AI magic, please wait...'):
time.sleep(1)
# Query the API Summary
output_sum = query_sum({"inputs": text, })
# Display the results
summary = output_sum[0]['summary_text'].replace('<n>', " ")
st.divider()
st.subheader("Summary AI")
st.markdown(f"Your article: **{title}**")
st.markdown(f"**{summary}**")
st.divider()
st.subheader("Summary Library NewsPaper")
st.markdown(f"Your article: **{title}**")
st.markdown(f"**{summ}**")
st.divider()
st.subheader("Real Article")
st.markdown(f"Your article: **{title}**")
st.markdown(f"**{text}**")