import argparse, os, sys, glob import datetime, time from omegaconf import OmegaConf from tqdm import tqdm from einops import rearrange, repeat from collections import OrderedDict import torch import torchvision import torchvision.transforms as transforms from pytorch_lightning import seed_everything from PIL import Image sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) from .lvdm.models.samplers.ddim import DDIMSampler from .lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond from .utils import instantiate_from_config def get_filelist(data_dir, postfixes): patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes] file_list = [] for pattern in patterns: file_list.extend(glob.glob(pattern)) file_list.sort() return file_list def load_model_checkpoint(model, ckpt): state_dict = torch.load(ckpt, map_location="cpu") if "state_dict" in list(state_dict.keys()): state_dict = state_dict["state_dict"] try: model.load_state_dict(state_dict, strict=True) except: ## rename the keys for 256x256 model new_pl_sd = OrderedDict() for k, v in state_dict.items(): new_pl_sd[k] = v for k in list(new_pl_sd.keys()): if "framestride_embed" in k: new_key = k.replace("framestride_embed", "fps_embedding") new_pl_sd[new_key] = new_pl_sd[k] del new_pl_sd[k] model.load_state_dict(new_pl_sd, strict=True) else: # deepspeed new_pl_sd = OrderedDict() for key in state_dict['module'].keys(): new_pl_sd[key[16:]] = state_dict['module'][key] model.load_state_dict(new_pl_sd) print('>>> model checkpoint loaded.') return model def load_prompts(prompt_file): f = open(prompt_file, 'r') prompt_list = [] for idx, line in enumerate(f.readlines()): l = line.strip() if len(l) != 0: prompt_list.append(l) f.close() return prompt_list def load_data_prompts(data_dir, video_size=(256, 256), video_frames=16, interp=False): ## load prompts prompt_file = get_filelist(data_dir, ['txt']) assert len(prompt_file) > 0, "Error: found NO prompt file!" ###### default prompt default_idx = 0 default_idx = min(default_idx, len(prompt_file) - 1) if len(prompt_file) > 1: print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.") ## only use the first one (sorted by name) if multiple exist ## load video file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG']) # assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!" data_list = [] filename_list = [] prompt_list = load_prompts(prompt_file[default_idx]) n_samples = len(prompt_list) for idx in range(n_samples): if interp: image1 = Image.open(file_list[2 * idx]).convert('RGB') image2 = Image.open(file_list[2 * idx + 1]).convert('RGB') frame_tensor = processing_image((image1, image2), video_size, video_frames, True) _, filename = os.path.split(file_list[idx * 2]) else: image = Image.open(file_list[idx]).convert('RGB') frame_tensor = processing_image(image, video_size, video_frames, False) _, filename = os.path.split(file_list[idx]) data_list.append(frame_tensor) filename_list.append(filename) return filename_list, data_list, prompt_list def processing_image(image, video_size=(256, 256), video_frames=16, interp=False): transform = transforms.Compose([ transforms.Resize(min(video_size)), transforms.CenterCrop(video_size), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) if interp: image1, image2 = image image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w] image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w] frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=video_frames // 2) frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=video_frames // 2) frame_tensor = torch.cat([frame_tensor1, frame_tensor2], dim=1) else: image_tensor = transform(image).unsqueeze(1) # [c,1,h,w] frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames) return frame_tensor def save_results(prompt, samples, filename, fakedir, fps=8, loop=False): filename = filename.split('.')[0] + '.mp4' prompt = prompt[0] if isinstance(prompt, list) else prompt ## save video videos = [samples] savedirs = [fakedir] for idx, video in enumerate(videos): if video is None: continue # b,c,t,h,w video = video.detach().cpu() video = torch.clamp(video.float(), -1., 1.) n = video.shape[0] video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w if loop: video = video[:-1, ...] frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, 1*h, n*w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w] grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) path = os.path.join(savedirs[idx], filename) torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) ## crf indicates the quality def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False): prompt = prompt[0] if isinstance(prompt, list) else prompt ## save video videos = [samples] savedirs = [fakedir] for idx, video in enumerate(videos): if video is None: continue # b,c,t,h,w video = video.detach().cpu() if loop: # remove the last frame video = video[:, :, :-1, ...] video = torch.clamp(video.float(), -1., 1.) n = video.shape[0] for i in range(n): grid = video[i, ...] grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4') torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) def get_latent_z(model, videos): b, c, t, h, w = videos.shape x = rearrange(videos, 'b c t h w -> (b t) c h w') z = model.encode_first_stage(x) z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) return z def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs): ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model) batch_size = noise_shape[0] fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device) if not text_input: prompts = [""] * batch_size img = videos[:, :, 0] #bchw img_emb = model.embedder(img) ## blc img_emb = model.image_proj_model(img_emb) cond_emb = model.get_learned_conditioning(prompts) cond = {"c_crossattn": [torch.cat([cond_emb, img_emb], dim=1)]} if model.model.conditioning_key == 'hybrid': z = get_latent_z(model, videos) # b c t h w if loop or interp: img_cat_cond = torch.zeros_like(z) img_cat_cond[:, :, 0, :, :] = z[:, :, 0, :, :] img_cat_cond[:, :, -1, :, :] = z[:, :, -1, :, :] else: img_cat_cond = z[:, :, :1, :, :] img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2]) cond["c_concat"] = [img_cat_cond] # b c 1 h w if unconditional_guidance_scale != 1.0: if model.uncond_type == "empty_seq": prompts = batch_size * [""] uc_emb = model.get_learned_conditioning(prompts) elif model.uncond_type == "zero_embed": uc_emb = torch.zeros_like(cond_emb) uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c uc_img_emb = model.image_proj_model(uc_img_emb) uc = {"c_crossattn": [torch.cat([uc_emb, uc_img_emb], dim=1)]} if model.model.conditioning_key == 'hybrid': uc["c_concat"] = [img_cat_cond] else: uc = None ## we need one more unconditioning image=yes, text="" if multiple_cond_cfg and cfg_img != 1.0: uc_2 = {"c_crossattn": [torch.cat([uc_emb, img_emb], dim=1)]} if model.model.conditioning_key == 'hybrid': uc_2["c_concat"] = [img_cat_cond] kwargs.update({"unconditional_conditioning_img_nonetext": uc_2}) else: kwargs.update({"unconditional_conditioning_img_nonetext": None}) z0 = None cond_mask = None batch_variants = [] for _ in range(n_samples): if z0 is not None: cond_z0 = z0.clone() kwargs.update({"clean_cond": True}) else: cond_z0 = None if ddim_sampler is not None: samples, _ = ddim_sampler.sample(S=ddim_steps, conditioning=cond, batch_size=batch_size, shape=noise_shape[1:], verbose=False, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc, eta=ddim_eta, cfg_img=cfg_img, mask=cond_mask, x0=cond_z0, fs=fs, timestep_spacing=timestep_spacing, guidance_rescale=guidance_rescale, **kwargs ) ## reconstruct from latent to pixel space batch_images = model.decode_first_stage(samples) batch_variants.append(batch_images) ## variants, batch, c, t, h, w batch_variants = torch.stack(batch_variants) return batch_variants.permute(1, 0, 2, 3, 4, 5) def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--savedir", type=str, default=None, help="results saving path") parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") parser.add_argument("--config", type=str, help="config (yaml) path") parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt", ) parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM", ) parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)", ) parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one") parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") parser.add_argument("--frame_stride", type=int, default=3, help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)") parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything") parser.add_argument("--video_length", type=int, default=16, help="inference video length") parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt") parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not") parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not") parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning") parser.add_argument("--timestep_spacing", type=str, default="uniform", help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.") parser.add_argument("--guidance_rescale", type=float, default=0.0, help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)") parser.add_argument("--perframe_ae", action='store_true', default=False, help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024") ## currently not support looping video and generative frame interpolation parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not") parser.add_argument("--interp", action='store_true', default=False, help="generate generative frame interpolation or not") return parser class DynamiCrafterPipeline(): def __init__(self, args): """ Initialize the parameters from args Args: args: is a list consisting of arguments needed for parser. e.g. ["--ckpt_path", , ......] """ parser = get_parser() self.args = parser.parse_args(args) def run_inference(self, input_image): """ Run inference from the input_image. This input image can either be a tensor or a string as the path of the image file. Args: input_image: tensor or string. Returns: a tensor representing the generated video of shape (num_frames, channels, height, width) """ args = self.args seed_everything(args.seed) ## model config config = OmegaConf.load(self.args.config) model_config = config.pop("model", OmegaConf.create()) ## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set" model_config['params']['unet_config']['params']['use_checkpoint'] = False model = instantiate_from_config(model_config) model = model.cuda() model.perframe_ae = args.perframe_ae assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" model = load_model_checkpoint(model, args.ckpt_path) model.eval() ## run over data assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" assert args.bs == 1, "Current implementation only support [batch size = 1]!" ## latent noise shape h, w = args.height // 8, args.width // 8 channels = model.model.diffusion_model.out_channels n_frames = args.video_length print(f'Inference with {n_frames} frames') noise_shape = [args.bs, channels, n_frames, h, w] # fakedir = os.path.join(args.savedir, "samples") # fakedir_separate = os.path.join(args.savedir, "samples_separate") # os.makedirs(fakedir, exist_ok=True) # os.makedirs(fakedir_separate, exist_ok=True) ## prompt file setting if type(input_image) == str: args.prompt_dir = input_image assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!" filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, interp=args.interp) else: input_pil = (transforms.ToPILImage())(input_image) frame_tensor = processing_image(input_pil, (args.height, args.width), n_frames, args.interp) data_list, prompt_list = [frame_tensor], [args.text_input] num_samples = len(prompt_list) # print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) # indices = random.choices(list(range(0, num_samples)), k=samples_per_device) # indices = list(range(0, num_samples)) # prompt_list_rank = [prompt_list[i] for i in indices] # data_list_rank = [data_list[i] for i in indices] # filename_list_rank = [filename_list[i] for i in indices] # start = time.time() with torch.no_grad(), torch.cuda.amp.autocast(): # for idx, indice in tqdm(enumerate(range(0, len(prompt_list), args.bs)), desc='Sample Batch'): prompts = prompt_list[0] videos = data_list[0] # filenames = filename_list[0] if isinstance(videos, list): videos = torch.stack(videos, dim=0).to("cuda") else: videos = videos.unsqueeze(0).to("cuda") batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.interp, args.timestep_spacing, args.guidance_rescale) output = batch_samples.squeeze().permute(1, 0, 2, 3) return output # save each example individually # for nn, samples in enumerate(batch_samples): # ## samples : [n_samples,c,t,h,w] # prompt = prompts[nn] # filename = filenames[nn] # # save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop) # save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop) # print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")