import os from huggingface_hub import snapshot_download, hf_hub_download import torch from videogen_hub import MODEL_PATH class OpenSoraPlan(): def __init__(self, device="cuda"): """ 1. Download the pretrained model and put it inside MODEL_PATH 2. Create Pipeline Note: it seems that the model needed from model_dir cannot support cpu Args: device: 'cuda' or 'cpu' the device to use the model """ from videogen_hub.pipelines.opensora_plan.opensora.sample_t2v import OpenSoraPlanPipeline model_path = snapshot_download('LanguageBind/Open-Sora-Plan-v1.1.0', local_dir = os.path.join(MODEL_PATH, 'Open-Sora-Plan-v1.1.0')) arg_list = ['--model_path', model_path, '--version', '65x512x512', '--num_frames', '65', '--height', '512', '--width', '512', '--cache_dir', MODEL_PATH, '--text_encoder_name', 'DeepFloyd/t5-v1_1-xxl', '--text_prompt', 'prompt_list_0.txt', '--ae', 'CausalVAEModel_4x8x8', '--ae_path', "/remote-home1/yeyang/CausalVAEModel_4x8x8", '--save_img_path', "./sample_video_65x512x512", '--fps', '24', '--guidance_scale', '7.5', '--num_sampling_steps', '150', '--enable_tiling'] self.pipeline = OpenSoraPlanPipeline(arg_list, device) def infer_one_video( self, prompt: str = None, size: list = [320, 512], seconds: int = 2, fps: int = 8, seed: int = 42, ): """ Generates a single video based on the provided prompt and parameters. Note that there are only 3 available shapes: (1 or 65 or 221)xHxW The output is of shape [frames, channels, height, width]. Args: prompt (str, optional): The text prompt to generate the video from. Defaults to None. seconds (int, optional): The duration of the video in seconds. Defaults to 2. fps (int, optional): The frames per second of the video. Defaults to 8. seed (int, optional): The seed for random number generation. Defaults to 42. Returns: torch.Tensor: The generated video as a tensor. """ torch.manual_seed(seed) self.pipeline.args.text_prompt = prompt self.pipeline.args.num_frames = fps * seconds self.pipeline.args.fps = fps self.pipeline.args.height = size[0] self.pipeline.args.width = size[1] samples = self.pipeline.inference(save_output=False) # samples is torch.Size([B, T, H, W, C]) output = samples.squeeze(0).permute(0, 3, 1, 2).cpu().float() return output