Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Sample new images from a pre-trained DiT. | |
""" | |
import os | |
import sys | |
try: | |
import utils | |
from diffusion import create_diffusion | |
except: | |
# sys.path.append(os.getcwd()) | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
# sys.path[0] | |
# os.path.split(sys.path[0]) | |
import utils | |
from diffusion import create_diffusion | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
from einops import rearrange | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
sys.path.append("..") | |
from datasets_seine import video_transforms | |
from natsort import natsorted | |
def get_input(args): | |
input_path = args.input_path | |
transform_video = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.ResizeVideo((args.image_h, args.image_w)), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
if input_path is not None: | |
print(f'loading video from {input_path}') | |
if os.path.isdir(input_path): | |
file_list = os.listdir(input_path) | |
video_frames = [] | |
if args.mask_type.startswith('onelast'): | |
num = int(args.mask_type.split('onelast')[-1]) | |
# get first and last frame | |
first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) | |
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) | |
first_frame = torch.as_tensor( | |
np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
last_frame = torch.as_tensor( | |
np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
# add zeros to frames | |
num_zeros = args.num_frames - 2 * num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
for i in range(num): | |
video_frames.append(last_frame) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
else: | |
for file in file_list: | |
if file.endswith('jpg') or file.endswith('png'): | |
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0) | |
video_frames.append(image) | |
else: | |
continue | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
elif os.path.isfile(input_path): | |
_, full_file_name = os.path.split(input_path) | |
file_name, extension = os.path.splitext(full_file_name) | |
if extension == '.jpg' or extension == '.png': | |
print("loading the input image") | |
video_frames = [] | |
num = int(args.mask_type.split('first')[-1]) | |
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
num_zeros = args.num_frames - num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
else: | |
raise TypeError(f'{extension} is not supported !!') | |
else: | |
raise ValueError('Please check your path input!!') | |
else: | |
raise ValueError('Need to give a video or some images') | |
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device, ): | |
b, f, c, h, w = video_input.shape | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
# prepare inputs | |
if args.use_fp16: | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, | |
device=device) # b,c,f,h,w | |
masked_video = masked_video.to(dtype=torch.float16) | |
mask = mask.to(dtype=torch.float16) | |
else: | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w | |
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() | |
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) | |
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() | |
mask = torch.nn.functional.interpolate(mask[:, :, 0, :], size=(latent_h, latent_w)).unsqueeze(1) | |
# classifier_free_guidance | |
if args.do_classifier_free_guidance: | |
masked_video = torch.cat([masked_video] * 2) | |
mask = torch.cat([mask] * 2) | |
z = torch.cat([z] * 2) | |
prompt_all = [prompt] + [args.negative_prompt] | |
else: | |
masked_video = masked_video | |
mask = mask | |
z = z | |
prompt_all = [prompt] | |
text_prompt = text_encoder(text_prompts=prompt_all, train=False) | |
model_kwargs = dict(encoder_hidden_states=text_prompt, | |
class_labels=None, | |
cfg_scale=args.cfg_scale, | |
use_fp16=args.use_fp16, ) # tav unet | |
# Sample video: | |
if args.sample_method == 'ddim': | |
samples = diffusion.ddim_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, | |
device=device, \ | |
mask=mask, x_start=masked_video, use_concat=args.use_mask | |
) | |
elif args.sample_method == 'ddpm': | |
samples = diffusion.p_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, | |
device=device, \ | |
mask=mask, x_start=masked_video, use_concat=args.use_mask | |
) | |
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] | |
if args.use_fp16: | |
samples = samples.to(dtype=torch.float16) | |
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] | |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] | |
return video_clip | |