Baraaqasem's picture
Upload 585 files
5d32408 verified
raw
history blame
19.2 kB
import argparse, os, sys, glob
import datetime, time
from omegaconf import OmegaConf
from tqdm import tqdm
from einops import rearrange, repeat
from collections import OrderedDict
import torch
import torchvision
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from PIL import Image
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from .lvdm.models.samplers.ddim import DDIMSampler
from .lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
from .utils import instantiate_from_config
def get_filelist(data_dir, postfixes):
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes]
file_list = []
for pattern in patterns:
file_list.extend(glob.glob(pattern))
file_list.sort()
return file_list
def load_model_checkpoint(model, ckpt):
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
try:
model.load_state_dict(state_dict, strict=True)
except:
## rename the keys for 256x256 model
new_pl_sd = OrderedDict()
for k, v in state_dict.items():
new_pl_sd[k] = v
for k in list(new_pl_sd.keys()):
if "framestride_embed" in k:
new_key = k.replace("framestride_embed", "fps_embedding")
new_pl_sd[new_key] = new_pl_sd[k]
del new_pl_sd[k]
model.load_state_dict(new_pl_sd, strict=True)
else:
# deepspeed
new_pl_sd = OrderedDict()
for key in state_dict['module'].keys():
new_pl_sd[key[16:]] = state_dict['module'][key]
model.load_state_dict(new_pl_sd)
print('>>> model checkpoint loaded.')
return model
def load_prompts(prompt_file):
f = open(prompt_file, 'r')
prompt_list = []
for idx, line in enumerate(f.readlines()):
l = line.strip()
if len(l) != 0:
prompt_list.append(l)
f.close()
return prompt_list
def load_data_prompts(data_dir, video_size=(256, 256), video_frames=16, interp=False):
## load prompts
prompt_file = get_filelist(data_dir, ['txt'])
assert len(prompt_file) > 0, "Error: found NO prompt file!"
###### default prompt
default_idx = 0
default_idx = min(default_idx, len(prompt_file) - 1)
if len(prompt_file) > 1:
print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.")
## only use the first one (sorted by name) if multiple exist
## load video
file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG'])
# assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!"
data_list = []
filename_list = []
prompt_list = load_prompts(prompt_file[default_idx])
n_samples = len(prompt_list)
for idx in range(n_samples):
if interp:
image1 = Image.open(file_list[2 * idx]).convert('RGB')
image2 = Image.open(file_list[2 * idx + 1]).convert('RGB')
frame_tensor = processing_image((image1, image2), video_size, video_frames, True)
_, filename = os.path.split(file_list[idx * 2])
else:
image = Image.open(file_list[idx]).convert('RGB')
frame_tensor = processing_image(image, video_size, video_frames, False)
_, filename = os.path.split(file_list[idx])
data_list.append(frame_tensor)
filename_list.append(filename)
return filename_list, data_list, prompt_list
def processing_image(image, video_size=(256, 256), video_frames=16, interp=False):
transform = transforms.Compose([
transforms.Resize(min(video_size)),
transforms.CenterCrop(video_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
if interp:
image1, image2 = image
image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w]
image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w]
frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=video_frames // 2)
frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=video_frames // 2)
frame_tensor = torch.cat([frame_tensor1, frame_tensor2], dim=1)
else:
image_tensor = transform(image).unsqueeze(1) # [c,1,h,w]
frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames)
return frame_tensor
def save_results(prompt, samples, filename, fakedir, fps=8, loop=False):
filename = filename.split('.')[0] + '.mp4'
prompt = prompt[0] if isinstance(prompt, list) else prompt
## save video
videos = [samples]
savedirs = [fakedir]
for idx, video in enumerate(videos):
if video is None:
continue
# b,c,t,h,w
video = video.detach().cpu()
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
if loop:
video = video[:-1, ...]
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in
video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(savedirs[idx], filename)
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264',
options={'crf': '10'}) ## crf indicates the quality
def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False):
prompt = prompt[0] if isinstance(prompt, list) else prompt
## save video
videos = [samples]
savedirs = [fakedir]
for idx, video in enumerate(videos):
if video is None:
continue
# b,c,t,h,w
video = video.detach().cpu()
if loop: # remove the last frame
video = video[:, :, :-1, ...]
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
for i in range(n):
grid = video[i, ...]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc
path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'),
f'{filename.split(".")[0]}_sample{i}.mp4')
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
def get_latent_z(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
z = model.encode_first_stage(x)
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
return z
def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False,
multiple_cond_cfg=False, loop=False, interp=False, timestep_spacing='uniform',
guidance_rescale=0.0, **kwargs):
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
batch_size = noise_shape[0]
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device)
if not text_input:
prompts = [""] * batch_size
img = videos[:, :, 0] #bchw
img_emb = model.embedder(img) ## blc
img_emb = model.image_proj_model(img_emb)
cond_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [torch.cat([cond_emb, img_emb], dim=1)]}
if model.model.conditioning_key == 'hybrid':
z = get_latent_z(model, videos) # b c t h w
if loop or interp:
img_cat_cond = torch.zeros_like(z)
img_cat_cond[:, :, 0, :, :] = z[:, :, 0, :, :]
img_cat_cond[:, :, -1, :, :] = z[:, :, -1, :, :]
else:
img_cat_cond = z[:, :, :1, :, :]
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
cond["c_concat"] = [img_cat_cond] # b c 1 h w
if unconditional_guidance_scale != 1.0:
if model.uncond_type == "empty_seq":
prompts = batch_size * [""]
uc_emb = model.get_learned_conditioning(prompts)
elif model.uncond_type == "zero_embed":
uc_emb = torch.zeros_like(cond_emb)
uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
uc_img_emb = model.image_proj_model(uc_img_emb)
uc = {"c_crossattn": [torch.cat([uc_emb, uc_img_emb], dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc["c_concat"] = [img_cat_cond]
else:
uc = None
## we need one more unconditioning image=yes, text=""
if multiple_cond_cfg and cfg_img != 1.0:
uc_2 = {"c_crossattn": [torch.cat([uc_emb, img_emb], dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc_2["c_concat"] = [img_cat_cond]
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
else:
kwargs.update({"unconditional_conditioning_img_nonetext": None})
z0 = None
cond_mask = None
batch_variants = []
for _ in range(n_samples):
if z0 is not None:
cond_z0 = z0.clone()
kwargs.update({"clean_cond": True})
else:
cond_z0 = None
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=batch_size,
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
cfg_img=cfg_img,
mask=cond_mask,
x0=cond_z0,
fs=fs,
timestep_spacing=timestep_spacing,
guidance_rescale=guidance_rescale,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples)
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
return batch_variants.permute(1, 0, 2, 3, 4, 5)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
parser.add_argument("--config", type=str, help="config (yaml) path")
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt", )
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM", )
parser.add_argument("--ddim_eta", type=float, default=1.0,
help="eta for ddim sampling (0.0 yields deterministic sampling)", )
parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one")
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--frame_stride", type=int, default=3,
help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)")
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0,
help="prompt classifier-free guidance")
parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything")
parser.add_argument("--video_length", type=int, default=16, help="inference video length")
parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt")
parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not")
parser.add_argument("--multiple_cond_cfg", action='store_true', default=False,
help="use multi-condition cfg or not")
parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning")
parser.add_argument("--timestep_spacing", type=str, default="uniform",
help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.")
parser.add_argument("--guidance_rescale", type=float, default=0.0,
help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)")
parser.add_argument("--perframe_ae", action='store_true', default=False,
help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024")
## currently not support looping video and generative frame interpolation
parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not")
parser.add_argument("--interp", action='store_true', default=False,
help="generate generative frame interpolation or not")
return parser
class DynamiCrafterPipeline():
def __init__(self, args):
"""
Initialize the parameters from args
Args:
args: is a list consisting of arguments needed for parser.
e.g. ["--ckpt_path", <the model path>, ......]
"""
parser = get_parser()
self.args = parser.parse_args(args)
def run_inference(self, input_image):
"""
Run inference from the input_image.
This input image can either be a tensor or a string as the path of the image file.
Args:
input_image: tensor or string.
Returns: a tensor representing the generated video of shape (num_frames, channels, height, width)
"""
args = self.args
seed_everything(args.seed)
## model config
config = OmegaConf.load(self.args.config)
model_config = config.pop("model", OmegaConf.create())
## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
model_config['params']['unet_config']['params']['use_checkpoint'] = False
model = instantiate_from_config(model_config)
model = model.cuda()
model.perframe_ae = args.perframe_ae
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, args.ckpt_path)
model.eval()
## run over data
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
assert args.bs == 1, "Current implementation only support [batch size = 1]!"
## latent noise shape
h, w = args.height // 8, args.width // 8
channels = model.model.diffusion_model.out_channels
n_frames = args.video_length
print(f'Inference with {n_frames} frames')
noise_shape = [args.bs, channels, n_frames, h, w]
# fakedir = os.path.join(args.savedir, "samples")
# fakedir_separate = os.path.join(args.savedir, "samples_separate")
# os.makedirs(fakedir, exist_ok=True)
# os.makedirs(fakedir_separate, exist_ok=True)
## prompt file setting
if type(input_image) == str:
args.prompt_dir = input_image
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!"
filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir,
video_size=(args.height, args.width),
video_frames=n_frames, interp=args.interp)
else:
input_pil = (transforms.ToPILImage())(input_image)
frame_tensor = processing_image(input_pil, (args.height, args.width), n_frames, args.interp)
data_list, prompt_list = [frame_tensor], [args.text_input]
num_samples = len(prompt_list)
# print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
# indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
# indices = list(range(0, num_samples))
# prompt_list_rank = [prompt_list[i] for i in indices]
# data_list_rank = [data_list[i] for i in indices]
# filename_list_rank = [filename_list[i] for i in indices]
# start = time.time()
with torch.no_grad(), torch.cuda.amp.autocast():
# for idx, indice in tqdm(enumerate(range(0, len(prompt_list), args.bs)), desc='Sample Batch'):
prompts = prompt_list[0]
videos = data_list[0]
# filenames = filename_list[0]
if isinstance(videos, list):
videos = torch.stack(videos, dim=0).to("cuda")
else:
videos = videos.unsqueeze(0).to("cuda")
batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps,
args.ddim_eta, \
args.unconditional_guidance_scale, args.cfg_img, args.frame_stride,
args.text_input, args.multiple_cond_cfg, args.loop, args.interp,
args.timestep_spacing, args.guidance_rescale)
output = batch_samples.squeeze().permute(1, 0, 2, 3)
return output
# save each example individually
# for nn, samples in enumerate(batch_samples):
# ## samples : [n_samples,c,t,h,w]
# prompt = prompts[nn]
# filename = filenames[nn]
# # save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
# save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
# print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")