Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import hf_hub_download, snapshot_download | |
import torch | |
from videogen_hub import MODEL_PATH | |
class T2VTurbo(): | |
def __init__(self, base_model="vc2", merged=True, device="cuda"): | |
""" | |
1. Download the pretrained model and put it inside MODEL_PATH | |
2. Create Pipeline | |
Args: | |
device: 'cuda' or 'cpu' the device to use the model | |
""" | |
from videogen_hub.pipelines.t2v_turbo.inference_vc2 import T2VTurboVC2Pipeline1 | |
from videogen_hub.pipelines.t2v_turbo.inference_ms import T2VTurboMSPipeline1 | |
self.config = { | |
"model": { | |
"target": "lvdm.models.ddpm3d.LatentDiffusion", | |
"params": { | |
"linear_start": 0.00085, | |
"linear_end": 0.012, | |
"num_timesteps_cond": 1, | |
"timesteps": 1000, | |
"first_stage_key": "video", | |
"cond_stage_key": "caption", | |
"cond_stage_trainable": False, | |
"conditioning_key": "crossattn", | |
"image_size": [320, 512], | |
"channels": 4, | |
"scale_by_std": False, | |
"scale_factor": 0.18215, | |
"use_ema": False, | |
"uncond_type": "empty_seq", | |
"use_scale": True, | |
"scale_b": 0.7, | |
"unet_config": { | |
"target": "lvdm.modules.networks.openaimodel3d.UNetModel", | |
"params": { | |
"in_channels": 4, | |
"out_channels": 4, | |
"model_channels": 320, | |
"attention_resolutions": [4, 2, 1], | |
"num_res_blocks": 2, | |
"channel_mult": [1, 2, 4, 4], | |
"num_head_channels": 64, | |
"transformer_depth": 1, | |
"context_dim": 1024, | |
"use_linear": True, | |
"use_checkpoint": True, | |
"temporal_conv": True, | |
"temporal_attention": True, | |
"temporal_selfatt_only": True, | |
"use_relative_position": False, | |
"use_causal_attention": False, | |
"temporal_length": 16, | |
"addition_attention": True, | |
"fps_cond": True | |
} | |
}, | |
"first_stage_config": { | |
"target": "lvdm.models.autoencoder.AutoencoderKL", | |
"params": { | |
"embed_dim": 4, | |
"monitor": "val / rec_loss", | |
"ddconfig": { | |
"double_z": True, | |
"z_channels": 4, | |
"resolution": 512, | |
"in_channels": 3, | |
"out_ch": 3, | |
"ch": 128, | |
"ch_mult": [1, 2, 4, 4], | |
"num_res_blocks": 2, | |
"attn_resolutions": [], | |
"dropout": 0.0 | |
}, | |
"lossconfig": { | |
"target": "torch.nn.Identity" | |
} | |
} | |
}, | |
"cond_stage_config": { | |
"target": "lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder", | |
"params": { | |
"freeze": True, | |
"layer": "penultimate" | |
} | |
} | |
} | |
} | |
} | |
if base_model == "vc2" and merged: | |
merged_model_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-VC2-Merged", | |
filename="t2v_turbo_vc2.pt", | |
local_dir=os.path.join(MODEL_PATH, "T2V-Turbo-VC2")) | |
self.pipeline = T2VTurboVC2Pipeline1(self.config, merged, device, None, merged_model_path) | |
elif base_model == "vc2": | |
base_model_path = hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", | |
filename="model.ckpt", | |
local_dir=os.path.join(MODEL_PATH, "videocrafter2")) | |
unet_lora_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-VC2", | |
filename="unet_lora.pt", | |
local_dir=os.path.join(MODEL_PATH, "T2V-Turbo-VC2")) | |
# It uses the config provided above. | |
self.pipeline = T2VTurboVC2Pipeline1(self.config, merged, device, unet_lora_path, base_model_path) | |
else: | |
base_model_path = snapshot_download(repo_id="ali-vilab/text-to-video-ms-1.7b", | |
local_dir=os.path.join(MODEL_PATH, "modelscope_1.7b")) | |
unet_lora_path = hf_hub_download(repo_id="jiachenli-ucsb/T2V-Turbo-MS", | |
filename="unet_lora.pt", | |
local_dir=os.path.join(MODEL_PATH, "T2V-Turbo-MS")) | |
# It uses the config provided by base_model. | |
self.pipeline = T2VTurboMSPipeline1(device, unet_lora_path, base_model_path) | |
def infer_one_video( | |
self, | |
prompt: str = None, | |
size: list = [320, 512], | |
seconds: int = 2, | |
fps: int = 8, | |
seed: int = 42, | |
): | |
""" | |
Generates a single video based on the provided prompt and parameters. | |
The output is of shape [frames, channels, height, width]. | |
Args: | |
prompt (str, optional): The text prompt to generate the video from. Defaults to None. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The frames per second of the video. Defaults to 8. | |
seed (int, optional): The seed for random number generation. Defaults to 42. | |
Returns: | |
torch.Tensor: The generated video as a tensor. | |
""" | |
output = self.pipeline.inference(prompt=prompt, height=size[0], width=size[1], | |
seed=seed, num_frames=seconds * fps, fps=fps, randomize_seed=False) | |
# [channels, frames, height, width] -> [frames, channels, height, width] | |
output = output.squeeze().permute(1, 0, 2, 3) | |
return output.cpu() | |