Imag / src /videogen_hub /infermodels /opensora_plan.py
Baraaqasem's picture
Upload 49 files
413d4d0 verified
raw
history blame
2.82 kB
import os
from huggingface_hub import snapshot_download, hf_hub_download
import torch
from videogen_hub import MODEL_PATH
class OpenSoraPlan():
def __init__(self, device="cuda"):
"""
1. Download the pretrained model and put it inside MODEL_PATH
2. Create Pipeline
Note: it seems that the model needed from model_dir cannot support cpu
Args:
device: 'cuda' or 'cpu' the device to use the model
"""
from videogen_hub.pipelines.opensora_plan.opensora.sample_t2v import OpenSoraPlanPipeline
model_path = snapshot_download('LanguageBind/Open-Sora-Plan-v1.1.0', local_dir = os.path.join(MODEL_PATH, 'Open-Sora-Plan-v1.1.0'))
arg_list = ['--model_path', model_path,
'--version', '65x512x512',
'--num_frames', '65',
'--height', '512',
'--width', '512',
'--cache_dir', MODEL_PATH,
'--text_encoder_name', 'DeepFloyd/t5-v1_1-xxl',
'--text_prompt', 'prompt_list_0.txt',
'--ae', 'CausalVAEModel_4x8x8',
'--ae_path', "/remote-home1/yeyang/CausalVAEModel_4x8x8",
'--save_img_path', "./sample_video_65x512x512",
'--fps', '24',
'--guidance_scale', '7.5',
'--num_sampling_steps', '150',
'--enable_tiling']
self.pipeline = OpenSoraPlanPipeline(arg_list, device)
def infer_one_video(
self,
prompt: str = None,
size: list = [320, 512],
seconds: int = 2,
fps: int = 8,
seed: int = 42,
):
"""
Generates a single video based on the provided prompt and parameters.
Note that there are only 3 available shapes: (1 or 65 or 221)xHxW
The output is of shape [frames, channels, height, width].
Args:
prompt (str, optional): The text prompt to generate the video from. Defaults to None.
seconds (int, optional): The duration of the video in seconds. Defaults to 2.
fps (int, optional): The frames per second of the video. Defaults to 8.
seed (int, optional): The seed for random number generation. Defaults to 42.
Returns:
torch.Tensor: The generated video as a tensor.
"""
torch.manual_seed(seed)
self.pipeline.args.text_prompt = prompt
self.pipeline.args.num_frames = fps * seconds
self.pipeline.args.fps = fps
self.pipeline.args.height = size[0]
self.pipeline.args.width = size[1]
samples = self.pipeline.inference(save_output=False)
# samples is torch.Size([B, T, H, W, C])
output = samples.squeeze(0).permute(0, 3, 1, 2).cpu().float()
return output