Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import snapshot_download, hf_hub_download | |
import torch | |
from videogen_hub import MODEL_PATH | |
class OpenSoraPlan(): | |
def __init__(self, device="cuda"): | |
""" | |
1. Download the pretrained model and put it inside MODEL_PATH | |
2. Create Pipeline | |
Note: it seems that the model needed from model_dir cannot support cpu | |
Args: | |
device: 'cuda' or 'cpu' the device to use the model | |
""" | |
from videogen_hub.pipelines.opensora_plan.opensora.sample_t2v import OpenSoraPlanPipeline | |
model_path = snapshot_download('LanguageBind/Open-Sora-Plan-v1.1.0', local_dir = os.path.join(MODEL_PATH, 'Open-Sora-Plan-v1.1.0')) | |
arg_list = ['--model_path', model_path, | |
'--version', '65x512x512', | |
'--num_frames', '65', | |
'--height', '512', | |
'--width', '512', | |
'--cache_dir', MODEL_PATH, | |
'--text_encoder_name', 'DeepFloyd/t5-v1_1-xxl', | |
'--text_prompt', 'prompt_list_0.txt', | |
'--ae', 'CausalVAEModel_4x8x8', | |
'--ae_path', "/remote-home1/yeyang/CausalVAEModel_4x8x8", | |
'--save_img_path', "./sample_video_65x512x512", | |
'--fps', '24', | |
'--guidance_scale', '7.5', | |
'--num_sampling_steps', '150', | |
'--enable_tiling'] | |
self.pipeline = OpenSoraPlanPipeline(arg_list, device) | |
def infer_one_video( | |
self, | |
prompt: str = None, | |
size: list = [320, 512], | |
seconds: int = 2, | |
fps: int = 8, | |
seed: int = 42, | |
): | |
""" | |
Generates a single video based on the provided prompt and parameters. | |
Note that there are only 3 available shapes: (1 or 65 or 221)xHxW | |
The output is of shape [frames, channels, height, width]. | |
Args: | |
prompt (str, optional): The text prompt to generate the video from. Defaults to None. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The frames per second of the video. Defaults to 8. | |
seed (int, optional): The seed for random number generation. Defaults to 42. | |
Returns: | |
torch.Tensor: The generated video as a tensor. | |
""" | |
torch.manual_seed(seed) | |
self.pipeline.args.text_prompt = prompt | |
self.pipeline.args.num_frames = fps * seconds | |
self.pipeline.args.fps = fps | |
self.pipeline.args.height = size[0] | |
self.pipeline.args.width = size[1] | |
samples = self.pipeline.inference(save_output=False) | |
# samples is torch.Size([B, T, H, W, C]) | |
output = samples.squeeze(0).permute(0, 3, 1, 2).cpu().float() | |
return output | |