Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import snapshot_download, hf_hub_download | |
from videogen_hub import MODEL_PATH | |
class OpenSora12: | |
def __init__(self, device="gpu"): | |
""" | |
1. Download the pretrained model and put it inside MODEL_PATH/modelscope | |
2. Create Pipeline | |
Note: it seems that the model needed from model_dir cannot support cpu | |
Args: | |
device: 'gpu' or 'cpu' the device to use the model | |
""" | |
from mmengine import Config as mmengine_config | |
from videogen_hub.pipelines.opensora.scripts.inference import main | |
model_path = snapshot_download("hpcai-tech/OpenSora-STDiT-v3", | |
local_dir=os.path.join(MODEL_PATH, 'OpenSora-STDiT-v3')) | |
self.pipeline = main | |
self.config = { | |
# Basic video frame settings | |
"num_frames": 51, # Total number of frames in a clip | |
"frame_interval": 1, # Interval between frames | |
"fps": 24, # Frames per second | |
"image_size": [480, 854], # Resolution of each frame (height, width) | |
# Model configuration for multi-resolution and specific model parameters | |
"multi_resolution": "STDiT2", # Multi-resolution model type | |
"model": { | |
"type": "STDiT3-XL/2", # Model type and size | |
"from_pretrained": os.path.join(MODEL_PATH, "STDiT3-XL_2"), # Path to pretrained checkpoint | |
"file_name": "model.safetensors", # Name of the model file | |
"input_sq_size": 512, # Input square size for the model | |
"qk_norm": True, # Whether to normalize query-key in attention | |
"enable_flashattn": False, # Enable flash attention mechanism, require flash_attn package | |
"enable_layernorm_kernel": False, # Enable layer normalization in kernel, requires apex package | |
}, | |
# Variational Autoencoder (VAE) specific settings | |
"vae": { | |
"type": "OpenSoraVAE_V1_2", # Type of the autoencoder | |
"from_pretrained": "hpcai-tech/OpenSora-VAE-v1.2", # Pretrained model from Hugging Face | |
#"cache_dir": os.path.join(MODEL_PATH, "OpenSora-VAE-v1.2"), # Local cache directory for model weights | |
"micro_frame_size": 17, | |
"micro_batch_size": 4, # Batch size for processing | |
}, | |
# Text encoder settings for embedding textual information | |
"text_encoder": { | |
"type": "t5", # Text encoder model type | |
"from_pretrained": "DeepFloyd/t5-v1_1-xxl", # Pretrained model | |
"cache_dir": os.path.join(MODEL_PATH, "t5-v1_1-xxl"), # Cache directory | |
"model_max_length": 300, # Max length of text inputs | |
}, | |
# Scheduler settings for diffusion models | |
"scheduler": { | |
"type": "rflow", # Type of scheduler for the diffusion process | |
"num_sampling_steps": 30, # Number of sampling steps in diffusion | |
"cfg_scale": 7.0, # Scale for classifier-free guidance | |
# "cfg_channel": 3, # Number of channels for guidance | |
}, | |
# Additional settings for processing and output | |
"dtype": "bf16", # Data type for computation (bfloat16) | |
# "prompt_path": "./assets/texts/t2v_samples.txt", # Path to text prompts | |
"prompt_path": None, # Path to text prompts | |
"prompt": [ | |
"A beautiful sunset over the city" | |
], # List of prompts for generation | |
"batch_size": 1, # Batch size for generation | |
"seed": 42, # Seed for random number generators | |
"save_dir": "./samples/samples/", # Directory to save generated samples | |
"config": "sample.py", # Path to this configuration file | |
"prompt_as_path": False, # Treat the prompt as a file path (True/False) | |
"reference_path": None, # Path to reference image/video for conditioning | |
"loop": 1, # Number of times to loop the processing | |
"sample_name": None, # Specific name for the generated sample | |
"num_sample": 1, # Number of samples to generate | |
"aes": 6.5, | |
"flow": None, | |
} | |
self.config = mmengine_config(self.config) | |
hf_hub_download( | |
repo_id="hpcai-tech/OpenSora-STDiT-v3", | |
filename="model.safetensors", | |
local_dir=self.config.model.from_pretrained, | |
) | |
hf_hub_download( | |
repo_id="hpcai-tech/OpenSora-VAE-v1.2", | |
filename="model.safetensors", | |
local_dir=os.path.join(MODEL_PATH, "OpenSora-VAE-v1.2"), | |
) | |
hf_hub_download( | |
repo_id="DeepFloyd/t5-v1_1-xxl", | |
filename="pytorch_model-00001-of-00002.bin", | |
local_dir=self.config.text_encoder.cache_dir, | |
) | |
def infer_one_video( | |
self, | |
prompt: str = None, | |
size: list = [320, 512], | |
seconds: int = 2, | |
fps: int = 8, | |
seed: int = 42, | |
): | |
""" | |
Generates a single video based on the provided prompt and parameters. | |
The generated video always has resolution 256x256 | |
Args: | |
prompt (str, optional): The text prompt to generate the video from. Defaults to None. | |
size (list, optional): The resolution of the video. Defaults to [320, 512]. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The frames per second of the video. Defaults to 8. | |
seed (int, optional): The seed for random number generation. Defaults to 42. | |
Returns: | |
torch.Tensor: The generated video as a tensor. | |
""" | |
self.config.num_frames = fps * seconds | |
self.config.fps = fps | |
self.config.seed = seed | |
self.config.prompt = [prompt] | |
self.config.image_size = size | |
all_batch_samples = self.pipeline(self.config) | |
sample = all_batch_samples[0][0] | |
# sample is torch.Size([1, C, f, H, W]) | |
output = sample.squeeze(0).permute(1, 2, 3, 0).cpu().float() | |
# torch.Size([1, C, f, H, W]) -> torch.Size([f, H, W, C]) | |
# BFloat16 -> Float | |
return output | |