Imag / src /videogen_hub /infermodels /dynamicrafter.py
Baraaqasem's picture
Upload 49 files
413d4d0 verified
raw
history blame
4.05 kB
import os
from huggingface_hub import hf_hub_download
from PIL import Image
from videogen_hub import MODEL_PATH
class DynamiCrafter:
def __init__(self, version: str = "256"):
"""
Initializes the DynamiCrafter model using the Doubiiu/DynamiCrafter_{version} checkpoint from the Hugging Face Hub.
and load them to "MODEL_DIR/dynamicrafter_{version}_v1"
Args:
version (str, optional): The resolution of the video to generate. Choose from '256', '512', or '1024'. Defaults to '256'.
"""
from videogen_hub.pipelines.dynamicrafter.inference import DynamiCrafterPipeline
if version == "256":
(self.height, self.width) = 256, 256
self.fs = 3
self.model_path = hf_hub_download(
repo_id="Doubiiu/DynamiCrafter",
filename="model.ckpt",
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_256_v1"),
)
elif version == "512":
(self.height, self.width) = 320, 512
self.fs = 24
self.model_path = hf_hub_download(
repo_id="Doubiiu/DynamiCrafter_512",
filename="model.ckpt",
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_512_v1"),
)
elif version == "1024":
(self.height, self.width) = 576, 1024
self.fs = 10
self.model_path = hf_hub_download(
repo_id="Doubiiu/DynamiCrafter_1024",
filename="model.ckpt",
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_1024_v1"),
)
else:
raise ValueError("Invalid input. Please enter 256, 512, or 1024.")
self.arg_list = [
"--ckpt_path",
self.model_path,
"--config",
f"src/videogen_hub/pipelines/dynamicrafter/configs/inference_{version}_v1.0.yaml",
"--n_samples",
"1",
"--bs",
"1",
"--height",
str(self.height),
"--width",
str(self.width),
"--text_input",
"--unconditional_guidance_scale",
"7.5",
"--ddim_steps",
"50",
"--ddim_eta",
"1.0",
"--video_length",
"16",
"--frame_stride",
str(self.fs),
]
self.pipeline = DynamiCrafterPipeline(self.arg_list)
def infer_one_video(
self,
input_image: Image.Image,
prompt: str = None,
seconds: int = 2,
fps: int = 8,
seed: int = 42,
):
"""
Generates a single video based on a textual prompt and first frame image, using either a provided image or an image path as the starting point. The output is a tensor representing the video.
Args:
input_image (PIL.Image.Image): The input image to use as the basis for video generation.
prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to None.
size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [320, 512].
seconds (int, optional): The duration of the video in seconds. Defaults to 2.
fps (int, optional): The number of frames per second in the generated video. This determines how smooth the video appears. Defaults to 8.
seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42.
Returns:
torch.Tensor: A tensor representing the generated video, structured as (time, channel, height, width).
"""
self.pipeline.args.seed = seed
self.pipeline.args.text_input = prompt
self.pipeline.args.video_length = fps * seconds
video = self.pipeline.run_inference(input_image)
return video