Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from videogen_hub import MODEL_PATH | |
class DynamiCrafter: | |
def __init__(self, version: str = "256"): | |
""" | |
Initializes the DynamiCrafter model using the Doubiiu/DynamiCrafter_{version} checkpoint from the Hugging Face Hub. | |
and load them to "MODEL_DIR/dynamicrafter_{version}_v1" | |
Args: | |
version (str, optional): The resolution of the video to generate. Choose from '256', '512', or '1024'. Defaults to '256'. | |
""" | |
from videogen_hub.pipelines.dynamicrafter.inference import DynamiCrafterPipeline | |
if version == "256": | |
(self.height, self.width) = 256, 256 | |
self.fs = 3 | |
self.model_path = hf_hub_download( | |
repo_id="Doubiiu/DynamiCrafter", | |
filename="model.ckpt", | |
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_256_v1"), | |
) | |
elif version == "512": | |
(self.height, self.width) = 320, 512 | |
self.fs = 24 | |
self.model_path = hf_hub_download( | |
repo_id="Doubiiu/DynamiCrafter_512", | |
filename="model.ckpt", | |
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_512_v1"), | |
) | |
elif version == "1024": | |
(self.height, self.width) = 576, 1024 | |
self.fs = 10 | |
self.model_path = hf_hub_download( | |
repo_id="Doubiiu/DynamiCrafter_1024", | |
filename="model.ckpt", | |
local_dir=os.path.join(MODEL_PATH, "dynamicrafter_1024_v1"), | |
) | |
else: | |
raise ValueError("Invalid input. Please enter 256, 512, or 1024.") | |
self.arg_list = [ | |
"--ckpt_path", | |
self.model_path, | |
"--config", | |
f"src/videogen_hub/pipelines/dynamicrafter/configs/inference_{version}_v1.0.yaml", | |
"--n_samples", | |
"1", | |
"--bs", | |
"1", | |
"--height", | |
str(self.height), | |
"--width", | |
str(self.width), | |
"--text_input", | |
"--unconditional_guidance_scale", | |
"7.5", | |
"--ddim_steps", | |
"50", | |
"--ddim_eta", | |
"1.0", | |
"--video_length", | |
"16", | |
"--frame_stride", | |
str(self.fs), | |
] | |
self.pipeline = DynamiCrafterPipeline(self.arg_list) | |
def infer_one_video( | |
self, | |
input_image: Image.Image, | |
prompt: str = None, | |
seconds: int = 2, | |
fps: int = 8, | |
seed: int = 42, | |
): | |
""" | |
Generates a single video based on a textual prompt and first frame image, using either a provided image or an image path as the starting point. The output is a tensor representing the video. | |
Args: | |
input_image (PIL.Image.Image): The input image to use as the basis for video generation. | |
prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to None. | |
size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [320, 512]. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The number of frames per second in the generated video. This determines how smooth the video appears. Defaults to 8. | |
seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42. | |
Returns: | |
torch.Tensor: A tensor representing the generated video, structured as (time, channel, height, width). | |
""" | |
self.pipeline.args.seed = seed | |
self.pipeline.args.text_input = prompt | |
self.pipeline.args.video_length = fps * seconds | |
video = self.pipeline.run_inference(input_image) | |
return video | |