File size: 8,695 Bytes
5d32408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import imageio
from PIL import Image
from typing import List

import torch
import torch.nn.functional as F

from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline
from diffusers.utils.torch_utils import randn_tensor


class ShowOnePipeline():
    def __init__(self, base_path, interp_path, deepfloyd_path, sr1_path, sr2_path):
        """
        Downloading the necessary models from huggingface and utilize them to load their pipelines,
        https://github.com/showlab/Show-1
        """
        from .showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, \
            TextToVideoIFSuperResolutionPipeline
        from .showone.pipelines.pipeline_t2v_base_pixel import tensor2vid
        from .showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond

        self.tensor2vid = tensor2vid
        # Base Model
        # When using "showlab/show-1-base-0.0", it's advisable to increase the number of inference steps (e.g., 100)
        # and opt for a larger guidance scale (e.g., 12.0) to enhance visual quality.

        self.pipe_base = TextToVideoIFPipeline.from_pretrained(
            base_path,
            torch_dtype=torch.float16,
            variant="fp16"
        )
        self.pipe_base.enable_model_cpu_offload()

        # Interpolation Model

        self.pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained(
            interp_path,
            torch_dtype=torch.float16,
            variant="fp16"
        )
        self.pipe_interp_1.enable_model_cpu_offload()

        # Super-Resolution Model 1
        # Image super-resolution model from DeepFloyd https://huggingface.co/DeepFloyd/IF-II-L-v1.0
        # pretrained_model_path = "./checkpoints/DeepFloyd/IF-II-L-v1.0"

        self.pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained(
            deepfloyd_path,
            text_encoder=None,
            torch_dtype=torch.float16,
            variant="fp16"
        )
        self.pipe_sr_1_image.enable_model_cpu_offload()

        self.pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained(
            sr1_path,
            torch_dtype=torch.float16
        )
        self.pipe_sr_1_cond.enable_model_cpu_offload()

        # Super-Resolution Model 2

        self.pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained(
            sr2_path,
            torch_dtype=torch.float16
        )
        self.pipe_sr_2.enable_model_cpu_offload()
        self.pipe_sr_2.enable_vae_slicing()

    def inference(self, prompt: str = "",
                  negative_prompt: str = "",
                  output_size: List[int] = [240, 560],
                  initial_num_frames: int = 8,
                  scaling_factor: int = 4,
                  seed: int = 42):
        """
        Generates a single video based on a textual prompt. The output is a tensor representing the video.
        The initial_num_frames is set to be 8 as shown in paper.
        https://github.com/showlab/Show-1

        Args:
            prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to "".
            negative_prompt (str, optional): The negative prompt that guided the video generation. Defaults to "".
            output_size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [240, 560].
            initial_num_frames: the number of frames generated using the base model. Defaults to 8 as proposed in the paper.
            scaling_factor: The amount of scaling during the interpolation step. Defaults to 4 as proposed in the paper, which interpolates number of frames from 8 to 29.
            seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42.

        Returns:
            The generated video as a tensor with shape (num_frames, channels, height, width).
        """
        # Inference
        # Text embeds
        prompt_embeds, negative_embeds = self.pipe_base.encode_prompt(prompt)

        # Keyframes generation (8x64x40, 2fps)
        video_frames = self.pipe_base(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_embeds,
            num_frames=initial_num_frames,
            height=40,
            width=64,
            num_inference_steps=75,
            guidance_scale=9.0,
            generator=torch.manual_seed(seed),
            output_type="pt"
        ).frames

        # Frame interpolation (8x64x40, 2fps -> 29x64x40, 7.5fps)

        bsz, channel, num_frames_1, height, width = video_frames.shape

        k = scaling_factor

        new_num_frames = (k - 1) * (num_frames_1 - 1) + num_frames_1
        new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width),
                                       dtype=video_frames.dtype, device=video_frames.device)
        new_video_frames[:, :, torch.arange(0, new_num_frames, k), ...] = video_frames
        init_noise = randn_tensor((bsz, channel, k + 1, height, width), dtype=video_frames.dtype,
                                  device=video_frames.device, generator=torch.manual_seed(seed))

        for i in range(num_frames_1 - 1):
            batch_i = torch.zeros((bsz, channel, k + 1, height, width), dtype=video_frames.dtype,
                                  device=video_frames.device)
            batch_i[:, :, 0, ...] = video_frames[:, :, i, ...]
            batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...]
            batch_i = self.pipe_interp_1(
                pixel_values=batch_i,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_embeds,
                num_frames=batch_i.shape[2],
                height=40,
                width=64,
                num_inference_steps=75,
                guidance_scale=4.0,
                generator=torch.manual_seed(seed),
                output_type="pt",
                init_noise=init_noise,
                cond_interpolation=True,
            ).frames

            new_video_frames[:, :, i * k:i * k + k + 1, ...] = batch_i

        video_frames = new_video_frames

        # Super-resolution 1 (29x64x40 -> 29x256x160)
        bsz, channel, num_frames_2, height, width = video_frames.shape
        window_size, stride = 8, 7
        new_video_frames = torch.zeros(
            (bsz, channel, num_frames_2, height * 4, width * 4),
            dtype=video_frames.dtype,
            device=video_frames.device)
        for i in range(0, num_frames_2 - window_size + 1, stride):
            batch_i = video_frames[:, :, i:i + window_size, ...]
            all_frame_cond = None

            if i == 0:
                first_frame_cond = self.pipe_sr_1_image(
                    image=video_frames[:, :, 0, ...],
                    prompt_embeds=prompt_embeds,
                    negative_prompt_embeds=negative_embeds,
                    height=height * 4,
                    width=width * 4,
                    num_inference_steps=70,
                    guidance_scale=4.0,
                    noise_level=150,
                    generator=torch.manual_seed(seed),
                    output_type="pt"
                ).images
                first_frame_cond = first_frame_cond.unsqueeze(2)
            else:
                first_frame_cond = new_video_frames[:, :, i:i + 1, ...]

            batch_i = self.pipe_sr_1_cond(
                image=batch_i,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_embeds,
                first_frame_cond=first_frame_cond,
                height=height * 4,
                width=width * 4,
                num_inference_steps=125,
                guidance_scale=7.0,
                noise_level=250,
                generator=torch.manual_seed(seed),
                output_type="pt"
            ).frames
            new_video_frames[:, :, i:i + window_size, ...] = batch_i

        video_frames = new_video_frames

        # Super-resolution 2 (29x256x160 -> 29x576x320)
        video_frames = [Image.fromarray(frame).resize((output_size[1], output_size[0])) for frame in
                        self.tensor2vid(video_frames.clone())]
        video_frames = self.pipe_sr_2(
            prompt,
            negative_prompt=negative_prompt,
            video=video_frames,
            strength=0.8,
            num_inference_steps=50,
            generator=torch.manual_seed(seed),
            output_type="pt"
        ).frames

        output = video_frames.squeeze()

        return output