Spaces:
Runtime error
Runtime error
refactor app, prepare for second prediction
Browse files- .gitignore +5 -0
- app.py +122 -59
- requirements.txt +5 -1
- saved_model/config.json +0 -3
- saved_model/special_tokens_map.json +0 -3
- saved_model/tokenizer.json +0 -3
- saved_model/tokenizer_config.json +0 -3
- saved_model/vocab.txt +0 -3
- saved_model_dep/config.json +54 -0
- {saved_model β saved_model_dep}/pytorch_model.bin +0 -0
- saved_model_dep/special_tokens_map.json +1 -0
- saved_model_dep/tokenizer.json +0 -0
- saved_model_dep/tokenizer_config.json +1 -0
- {saved_model β saved_model_dep}/training_args.bin +0 -0
- saved_model_dep/vocab.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
llama*
|
3 |
+
.DS_Store
|
4 |
+
.vscode/
|
5 |
+
old/
|
app.py
CHANGED
@@ -3,84 +3,147 @@
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
from langdetect import detect
|
9 |
from matplotlib import pyplot as plt
|
10 |
import imageio
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
plt.barh(y_pos, rates)
|
48 |
-
plt.yticks(y_pos,
|
49 |
-
|
50 |
-
#
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
maxRate = np.max(rates)
|
53 |
maxIndex = np.argmax(rates)
|
54 |
|
|
|
|
|
55 |
# ML model not sure if highest probability < 60%
|
56 |
-
if maxRate <
|
57 |
-
|
58 |
-
|
59 |
-
name = "Das ML-Modell ist nicht sicher. Das Departement kΓΆnnte sein : \n\n"
|
60 |
-
else:
|
61 |
-
name = "Le modΓ¨le ML n'est pas sΓ»r. Le dΓ©partement pourrait Γͺtre : \n\n"
|
62 |
-
i = 0
|
63 |
# Show each department that has a probability > 10%
|
|
|
64 |
while i == 0:
|
65 |
if rates[maxIndex] >= 0.1:
|
66 |
-
|
|
|
|
|
67 |
rates[maxIndex] = 0
|
68 |
maxIndex = np.argmax(rates)
|
69 |
else:
|
70 |
i = 1
|
|
|
71 |
# ML model pretty sure, show only one department
|
72 |
else:
|
73 |
-
name =
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
return name, im
|
80 |
-
|
81 |
|
82 |
# display the UI
|
83 |
-
interface = gr.Interface(
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForSequenceClassification,
|
8 |
+
AutoTokenizer,
|
9 |
+
TextClassificationPipeline,
|
10 |
+
pipeline,
|
11 |
+
)
|
12 |
from langdetect import detect
|
13 |
from matplotlib import pyplot as plt
|
14 |
import imageio
|
15 |
|
16 |
+
# move constants into extra file
|
17 |
+
ML_MODEL_SURE = 0.6
|
18 |
+
UNKNOWN_LANG_TEXT = (
|
19 |
+
"The language is not recognized, it must be either in German or in French."
|
20 |
+
)
|
21 |
+
PLACEHOLDER_TEXT = "Geben Sie bitte den Titel und den Sumbmitted Text des Vorstoss ein.\nVeuillez entrer le titre et le Submitted Text de la requΓͺte."
|
22 |
|
23 |
+
UNSURE_DE_TEXT = "Das ML-Modell ist nicht sicher. Das Departement kΓΆnnte sein : \n\n"
|
24 |
+
UNSURE_FR_TEXT = "Le modΓ¨le ML n'est pas sΓ»r. Le dΓ©partement pourrait Γͺtre : \n\n"
|
25 |
+
BARS_DEP_FR = (
|
26 |
+
"DDPS",
|
27 |
+
"DFI",
|
28 |
+
"AS-MPC",
|
29 |
+
"DFJP",
|
30 |
+
"DEFR",
|
31 |
+
"DETEC",
|
32 |
+
"DFAE",
|
33 |
+
"Parl",
|
34 |
+
"ChF",
|
35 |
+
"DFF",
|
36 |
+
"AF",
|
37 |
+
"TF",
|
38 |
+
)
|
39 |
+
BARS_DEP_DE = (
|
40 |
+
"VBS",
|
41 |
+
"EDI",
|
42 |
+
"AB-BA",
|
43 |
+
"EJPD",
|
44 |
+
"WBF",
|
45 |
+
"UVEK",
|
46 |
+
"EDA",
|
47 |
+
"Parl",
|
48 |
+
"BK",
|
49 |
+
"EFD",
|
50 |
+
"BV",
|
51 |
+
"BGer",
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def load_model(modelFolder):
|
56 |
+
"""Loads model from model_folder & creates a text classification pipeline."""
|
57 |
+
model = AutoModelForSequenceClassification.from_pretrained(modelFolder)
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(modelFolder)
|
59 |
+
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
60 |
+
return pipe
|
61 |
+
|
62 |
+
|
63 |
+
def translate_to_de(inputText):
|
64 |
+
"""Translates french user input to German for the model to reach better classification."""
|
65 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-de")
|
66 |
+
translatedText = translator(inputText[0:1000])
|
67 |
+
text = translatedText[0]["translation_text"]
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
def create_bar_plot(rates, language):
|
72 |
+
barnames = BARS_DEP_FR if language == "fr" else BARS_DEP_DE
|
73 |
+
|
74 |
+
y_pos = np.arange(len(barnames))
|
75 |
plt.barh(y_pos, rates)
|
76 |
+
plt.yticks(y_pos, barnames)
|
77 |
+
|
78 |
+
# Save the bar chart as png and load it (enables better display)
|
79 |
+
plt.savefig("rates.png")
|
80 |
+
im = imageio.v2.imread("rates.png")
|
81 |
+
|
82 |
+
return im, barnames
|
83 |
+
|
84 |
+
|
85 |
+
def show_chosen_category(barnames, rates, language):
|
86 |
+
"""Creates the output text
|
87 |
+
- adds disclaimer if ML model is not sure
|
88 |
+
- when unsure, adds all categories with prob. > 10% to output"""
|
89 |
maxRate = np.max(rates)
|
90 |
maxIndex = np.argmax(rates)
|
91 |
|
92 |
+
distance = "\t\t\t\t\t"
|
93 |
+
|
94 |
# ML model not sure if highest probability < 60%
|
95 |
+
if maxRate < ML_MODEL_SURE:
|
96 |
+
name = UNSURE_FR_TEXT if language == "fr" else UNSURE_DE_TEXT
|
97 |
+
|
|
|
|
|
|
|
|
|
98 |
# Show each department that has a probability > 10%
|
99 |
+
i = 0
|
100 |
while i == 0:
|
101 |
if rates[maxIndex] >= 0.1:
|
102 |
+
chosenScore = str(rates[maxIndex])[2:4]
|
103 |
+
chosenCat = barnames[maxIndex]
|
104 |
+
name = name + "\t" + chosenScore + "%" + distance + chosenCat + "\n"
|
105 |
rates[maxIndex] = 0
|
106 |
maxIndex = np.argmax(rates)
|
107 |
else:
|
108 |
i = 1
|
109 |
+
|
110 |
# ML model pretty sure, show only one department
|
111 |
else:
|
112 |
+
name = str(maxRate)[2:4] + "%" + distance + barnames[maxIndex]
|
113 |
+
|
114 |
+
return name
|
115 |
+
|
116 |
+
|
117 |
+
pipeDep = load_model("saved_model_dep")
|
118 |
+
# pipeOffice = load_model("saved_model_office")
|
119 |
+
|
120 |
+
|
121 |
+
# Function called by the UI
|
122 |
+
def attribution(inputText):
|
123 |
+
plt.clf()
|
124 |
+
language = detect(inputText)
|
125 |
+
|
126 |
+
# Translate the input to german if necessary
|
127 |
+
if language == "fr":
|
128 |
+
inputText = translate_to_de(inputText)
|
129 |
+
elif language != "de":
|
130 |
+
return UNKNOWN_LANG_TEXT, None
|
131 |
+
|
132 |
+
# Make the prediction with the 1000 first characters
|
133 |
+
prediction = pipeDep(inputText[0:1000], return_all_scores=True)
|
134 |
+
rates = [row["score"] for row in prediction[0]]
|
135 |
+
|
136 |
+
# Create barplot & output text
|
137 |
+
im, barnames = create_bar_plot(rates, language)
|
138 |
+
chosenCategoryText = show_chosen_category(barnames, rates, language)
|
139 |
+
|
140 |
+
return chosenCategoryText, im
|
141 |
|
|
|
|
|
142 |
|
143 |
# display the UI
|
144 |
+
interface = gr.Interface(
|
145 |
+
fn=attribution,
|
146 |
+
inputs=[gr.components.Textbox(lines=20, placeholder=PLACEHOLDER_TEXT)],
|
147 |
+
outputs=["text", "image"],
|
148 |
+
)
|
149 |
+
interface.launch()
|
requirements.txt
CHANGED
@@ -4,4 +4,8 @@ langdetect
|
|
4 |
matplotlib
|
5 |
imageio
|
6 |
torch
|
7 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
|
4 |
matplotlib
|
5 |
imageio
|
6 |
torch
|
7 |
+
sentencepiece
|
8 |
+
|
9 |
+
gradio
|
10 |
+
langdetect
|
11 |
+
imageio
|
saved_model/config.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f1dd5122dedc8fdf6eb1ec32b25f3246f8c3c64432abfd4d9bad4b626f378fc4
|
3 |
-
size 1255
|
|
|
|
|
|
|
|
saved_model/special_tokens_map.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:303df45a03609e4ead04bc3dc1536d0ab19b5358db685b6f3da123d05ec200e3
|
3 |
-
size 112
|
|
|
|
|
|
|
|
saved_model/tokenizer.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5d6f6affc6b91020cabef56fe9289907e34a89e7f3463a93250c0d94cc61000d
|
3 |
-
size 726371
|
|
|
|
|
|
|
|
saved_model/tokenizer_config.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5ed472c8edcb18869d09d7bc852465911b105dd301fda14b4283b01577a5ebd7
|
3 |
-
size 327
|
|
|
|
|
|
|
|
saved_model/vocab.txt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:982f8396ec746db0ed414dcc4789398ab6b365663cada50f776afb905dacbb61
|
3 |
-
size 254729
|
|
|
|
|
|
|
|
saved_model_dep/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-german-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0",
|
13 |
+
"1": "LABEL_1",
|
14 |
+
"2": "LABEL_2",
|
15 |
+
"3": "LABEL_3",
|
16 |
+
"4": "LABEL_4",
|
17 |
+
"5": "LABEL_5",
|
18 |
+
"6": "LABEL_6",
|
19 |
+
"7": "LABEL_7",
|
20 |
+
"8": "LABEL_8",
|
21 |
+
"9": "LABEL_9",
|
22 |
+
"10": "LABEL_10",
|
23 |
+
"11": "LABEL_11"
|
24 |
+
},
|
25 |
+
"initializer_range": 0.02,
|
26 |
+
"intermediate_size": 3072,
|
27 |
+
"label2id": {
|
28 |
+
"LABEL_0": 0,
|
29 |
+
"LABEL_1": 1,
|
30 |
+
"LABEL_10": 10,
|
31 |
+
"LABEL_11": 11,
|
32 |
+
"LABEL_2": 2,
|
33 |
+
"LABEL_3": 3,
|
34 |
+
"LABEL_4": 4,
|
35 |
+
"LABEL_5": 5,
|
36 |
+
"LABEL_6": 6,
|
37 |
+
"LABEL_7": 7,
|
38 |
+
"LABEL_8": 8,
|
39 |
+
"LABEL_9": 9
|
40 |
+
},
|
41 |
+
"layer_norm_eps": 1e-12,
|
42 |
+
"max_position_embeddings": 512,
|
43 |
+
"model_type": "bert",
|
44 |
+
"num_attention_heads": 12,
|
45 |
+
"num_hidden_layers": 12,
|
46 |
+
"pad_token_id": 0,
|
47 |
+
"position_embedding_type": "absolute",
|
48 |
+
"problem_type": "single_label_classification",
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.19.2",
|
51 |
+
"type_vocab_size": 2,
|
52 |
+
"use_cache": true,
|
53 |
+
"vocab_size": 30000
|
54 |
+
}
|
{saved_model β saved_model_dep}/pytorch_model.bin
RENAMED
File without changes
|
saved_model_dep/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
saved_model_dep/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
saved_model_dep/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-german-cased", "tokenizer_class": "BertTokenizer"}
|
{saved_model β saved_model_dep}/training_args.bin
RENAMED
File without changes
|
saved_model_dep/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|