import gradio as gr import numpy as np import librosa import requests import torch import torchaudio import math import os import soundfile as sf from glob import glob from pytube import YouTube from transformers import ( Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2ForCTC, TrainingArguments, Trainer, pipeline ) processor = Wav2Vec2Processor.from_pretrained( "airesearch/wav2vec2-large-xlsr-53-th") model = Wav2Vec2ForCTC.from_pretrained( "BALAKA/wav2vec2-large-xlsr-53-th-swear-words") demo = gr.Blocks() def check(sentence): found = [] negative = ["กระดอ", "กระทิง", "กระสัน", "กระหรี่", "กรีด", "กวนส้นตีน", "กะหรี่", "กินขี้ปี้เยี่ยว", "ขายตัว", "ขี้", "ขโมย", "ข่มขืน", "ควย", "ควาย", "คอขาด", "ฆ่า", "จังไร", "จัญไร", "ฉิบหาย", "ฉี่", "ชั่ว", "ชาติหมา", "ชิงหมาเกิด", "ชิบหาย", "ช้างเย็ด", "ดาก", "ตอแหล", "ตัดหัว", "ตัดหำ", "ตาย", "ตีกัน", "ทรมาน", "ทาส", "ทุเรศ", "นรก", "บีบคอ", "ปากหมา", "ปี้กัน", "พ่อง", "พ่อมึง", "ฟักยู", "ฟาย", "ยัดแม่", "ยิงกัน", "ระยำ", "ดอกทอง", "โสเภณี", "ล่อกัน", "ศพ", "สถุล", "สทุน", "สัด", "สันดาน", "สัส", "สาด", "ส้นตีน", "หน้าตัวเมืย", "ส้นตีน", "หมอย", "หรรม", "หัวแตก", "หำ", "หน้าหี", "น่าหี", "อนาจาร", "อัปปรี", "อีช้าง", "อีปลาวาฬ", "อีสัด", "อีหน้าหี", "อีหมา", "ห่า", "อับปรี", "เฆี่ยน", "เงี่ยน", "เจี๊ยว", "เชี่ย", "เด้า", "เผด็จการ", "เยี่ยว", "เย็ด", "เลือด", "เสือก", "เหล้า", "เหี้ย", "เอากัน", "แดก", "แตด", "แทง", "แม่ง", "แม่มึง", "แรด", "โคตร", "โง่", "โป๊", "โรคจิต", "ใจหมา", "ไอเข้", "ไอ้ขึ้หมา", "ไอ้บ้า", "ไอ้หมา", "เวร", "เวน"] negative = list(dict.fromkeys(negative)) for i in negative: if sentence.find(i) != -1: found.append(i) return found def resample(file_path): speech_array, sampling_rate = torchaudio.load(file_path) resampler = torchaudio.transforms.Resample(sampling_rate, 16000) return resampler(speech_array)[0].numpy() def tran_script(file_path): if isinstance(file_path, str): speech = resample(file_path) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentence = processor.batch_decode(predicted_ids) return predicted_sentence else: now_path = glob('/home/user/app/split_*.mp3') sentence = [] for i in range(file_path - 1): now_path = f'/home/user/app/split_{i+1}.mp3' speech = resample(now_path) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentence = processor.batch_decode(predicted_ids) sentence.append(predicted_sentence) return sentence def split_file(file_path): speech, sample_rate = librosa.load(file_path) buffer = 5 * sample_rate samples_total = len(speech) samples_wrote = 0 counter = 1 while samples_wrote < samples_total: if buffer > (samples_total - samples_wrote): buffer = samples_total - samples_wrote block = speech[samples_wrote: (samples_wrote + buffer)] out_filename = "split_" + str(counter) + ".mp3" sf.write(out_filename, block, sample_rate) counter += 1 samples_wrote += buffer return counter def process(file_path): if librosa.get_duration(filename=file_path) <= 5: sentence = tran_script(file_path) sentence = str(sentence).replace(' ', '').strip("[]") return 'found at 0.00m 0.00m 0.00-0.05 seconds found ' + str(check(sentence)) counter = split_file(file_path) sentence = tran_script(counter) result = '' for index, item in enumerate(sentence): now_sentence = item[0] now_sentence = str(item).replace(' ', '').strip("[]grt") now_sentence = check(now_sentence) if now_sentence: time = (index)*5 minutes = math.floor(time / 60) hours = math.floor(minutes/60) seconds = time % 60 minutes = str(minutes).zfill(2) hours = str(hours).zfill(2) fist_seconds = str(seconds).zfill(2) last_seconds = str(seconds+5).zfill(2) text = f'found at {hours}h {minutes}m {fist_seconds}-{last_seconds}seconds found {now_sentence}' result += text + '\n' return result def youtube_loader(link): yt = YouTube(str(link)) video = yt.streams.filter(only_audio=True).first() out_file = video.download(output_path='mp3') os.rename(out_file, '/home/user/app/mp3/youtube.mp3') return process('/home/user/app/mp3/youtube.mp3') def twitch_loader(link): os.system(f"twitch-dl download -q audio_only {link} --output twitch.wav") return process('/home/user/app/twitch.wav') with demo: gr.Markdown("Select your input type.") with gr.Tabs(): with gr.TabItem("From your voice."): with gr.Row(): voice = gr.Audio(source="microphone", type="filepath", optional=True, labe="Start record your voice here.") voice_output = gr.Textbox(labe="Your output is here.") text_button1 = gr.Button("Submit") with gr.TabItem("From your file."): with gr.Row(): file_input = gr.Audio( type="filepath", optional=True, labe="Drop your audio file here.") file_output = gr.Textbox(labe="Your output is here.") text_button4 = gr.Button("Submit") gr.Examples([["ex/ex1.mp3"], ["ex/ex2.mp3"]], inputs=file_input, outputs=file_output, fn=process) with gr.TabItem("From youtube"): with gr.Row(): youtube_input = gr.Textbox( label="Insert your youtube link here.", placeholder='https://www.youtube.com/watch?v=dQw4w9WgXcQ') youtube_output = gr.Textbox(labe="Your output is here.") text_button2 = gr.Button("Submit") gr.Examples([["https://youtu.be/JwOJWFniWS8"], ["https://youtu.be/B8TvZyoucxM"]], inputs=youtube_input, outputs=youtube_output, fn=youtube_loader) with gr.TabItem("From twitch"): with gr.Row(): twitch_input = gr.Textbox(label="Insert your twitch link or ID here.", placeholder='https://www.twitch.tv/videos/1823056925 or 1823056925') twitch_output = gr.Textbox(labe="Your output is here.") text_button3 = gr.Button("Submit") gr.Examples([["https://www.twitch.tv/videos/1823056925"], ["https://www.twitch.tv/videos/1827185416"]], inputs=twitch_input, outputs=twitch_output, fn=twitch_loader) text_button1.click(process, inputs=voice, outputs=voice_output) text_button2.click(youtube_loader, inputs=youtube_input, outputs=youtube_output) text_button3.click(twitch_loader, inputs=twitch_input, outputs=twitch_output) text_button4.click(process, inputs=file_input, outputs=file_output) demo.launch(enable_queue=True)