Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
edbeeching
commited on
Commit
·
1f60a20
1
Parent(s):
9346f1c
updates eval leaderboard so new evals can be added
Browse files
app.py
CHANGED
@@ -2,21 +2,27 @@ import os
|
|
2 |
import shutil
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
from huggingface_hub import Repository
|
|
|
6 |
import json
|
7 |
from apscheduler.schedulers.background import BackgroundScheduler
|
8 |
import pandas as pd
|
|
|
|
|
9 |
# clone / pull the lmeh eval data
|
10 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
|
|
|
|
11 |
repo=None
|
12 |
if H4_TOKEN:
|
|
|
13 |
# try:
|
14 |
# shutil.rmtree("./evals/")
|
15 |
# except:
|
16 |
# pass
|
17 |
|
18 |
repo = Repository(
|
19 |
-
local_dir="./evals/", clone_from=
|
20 |
)
|
21 |
repo.git_pull()
|
22 |
|
@@ -24,16 +30,13 @@ if H4_TOKEN:
|
|
24 |
# parse the results
|
25 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
26 |
BENCH_TO_NAME = {
|
27 |
-
"arc_challenge":"ARC",
|
28 |
-
"hellaswag":"HellaSwag",
|
29 |
-
"hendrycks":"MMLU",
|
30 |
-
"truthfulqa_mc":"TruthQA",
|
31 |
}
|
32 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
33 |
|
34 |
-
entries = [entry for entry in os.listdir("evals") if not entry.startswith('.')]
|
35 |
-
model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
|
36 |
-
|
37 |
|
38 |
def make_clickable_model(model_name):
|
39 |
# remove user from model name
|
@@ -53,11 +56,34 @@ def load_results(model, benchmark, metric):
|
|
53 |
mean_acc = np.mean(accs)
|
54 |
return mean_acc, data["config"]["model_args"]
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def get_leaderboard():
|
59 |
if repo:
|
|
|
60 |
repo.git_pull()
|
|
|
|
|
61 |
all_data = []
|
62 |
for model in model_directories:
|
63 |
model_data = {"base_model": None}
|
@@ -65,46 +91,173 @@ def get_leaderboard():
|
|
65 |
|
66 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
67 |
value, base_model = load_results(model, benchmark, metric)
|
68 |
-
model_data[BENCH_TO_NAME[benchmark]] = value
|
69 |
if base_model is not None: # in case the last benchmark failed
|
70 |
model_data["base_model"] = base_model
|
71 |
|
72 |
-
model_data["total"] = sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values())
|
73 |
|
74 |
if model_data["base_model"] is not None:
|
75 |
model_data["base_model"] = make_clickable_model(model_data["base_model"])
|
|
|
|
|
|
|
76 |
all_data.append(model_data)
|
77 |
|
78 |
dataframe = pd.DataFrame.from_records(all_data)
|
79 |
-
dataframe = dataframe.sort_values(by=['total'], ascending=False)
|
80 |
|
81 |
dataframe = dataframe[COLS]
|
82 |
return dataframe
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
leaderboard = get_leaderboard()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
block = gr.Blocks()
|
87 |
with block:
|
88 |
-
gr.
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
with gr.Row():
|
94 |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
|
95 |
datatype=TYPES, max_rows=5)
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
-
|
98 |
-
|
99 |
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
block.launch()
|
103 |
|
|
|
|
|
104 |
def refresh_leaderboard():
|
105 |
leaderboard_table = get_leaderboard()
|
106 |
print("leaderboard updated")
|
107 |
|
108 |
scheduler = BackgroundScheduler()
|
109 |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
|
110 |
-
scheduler.start()
|
|
|
|
|
|
2 |
import shutil
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import Repository, HfApi
|
6 |
+
from transformers import AutoConfig
|
7 |
import json
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
import pandas as pd
|
10 |
+
import datetime
|
11 |
+
|
12 |
# clone / pull the lmeh eval data
|
13 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
14 |
+
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
15 |
+
|
16 |
repo=None
|
17 |
if H4_TOKEN:
|
18 |
+
print("pulling repo")
|
19 |
# try:
|
20 |
# shutil.rmtree("./evals/")
|
21 |
# except:
|
22 |
# pass
|
23 |
|
24 |
repo = Repository(
|
25 |
+
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
|
26 |
)
|
27 |
repo.git_pull()
|
28 |
|
|
|
30 |
# parse the results
|
31 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
32 |
BENCH_TO_NAME = {
|
33 |
+
"arc_challenge":"ARC (25-shot) ⬆️",
|
34 |
+
"hellaswag":"HellaSwag (10-shot) ⬆️",
|
35 |
+
"hendrycks":"MMLU (5-shot) ⬆️",
|
36 |
+
"truthfulqa_mc":"TruthQA (0-shot) ⬆️",
|
37 |
}
|
38 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
def make_clickable_model(model_name):
|
42 |
# remove user from model name
|
|
|
56 |
mean_acc = np.mean(accs)
|
57 |
return mean_acc, data["config"]["model_args"]
|
58 |
|
59 |
+
def get_n_params(base_model):
|
60 |
+
|
61 |
+
# config = AutoConfig.from_pretrained(model_name)
|
62 |
+
|
63 |
+
# # Retrieve the number of parameters from the configuration
|
64 |
+
# try:
|
65 |
+
# num_params = config.n_parameters
|
66 |
+
# except AttributeError:
|
67 |
+
# print(f"Error: The number of parameters is not available in the config for the model '{model_name}'.")
|
68 |
+
# return None
|
69 |
+
|
70 |
+
# return num_params
|
71 |
+
|
72 |
+
now = datetime.datetime.now()
|
73 |
+
time_string = now.strftime("%Y-%m-%d %H:%M:%S")
|
74 |
+
return time_string
|
75 |
+
|
76 |
+
COLS = ["eval_name", "# params", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️", "base_model"]
|
77 |
+
TYPES = ["str","str", "number", "number", "number", "number", "number","markdown", ]
|
78 |
+
|
79 |
+
EVAL_COLS = ["model","# params", "private", "8bit_eval", "is_delta_weight", "status"]
|
80 |
+
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
|
81 |
def get_leaderboard():
|
82 |
if repo:
|
83 |
+
print("pulling changes")
|
84 |
repo.git_pull()
|
85 |
+
entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests")]
|
86 |
+
model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
|
87 |
all_data = []
|
88 |
for model in model_directories:
|
89 |
model_data = {"base_model": None}
|
|
|
91 |
|
92 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
93 |
value, base_model = load_results(model, benchmark, metric)
|
94 |
+
model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
|
95 |
if base_model is not None: # in case the last benchmark failed
|
96 |
model_data["base_model"] = base_model
|
97 |
|
98 |
+
model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
|
99 |
|
100 |
if model_data["base_model"] is not None:
|
101 |
model_data["base_model"] = make_clickable_model(model_data["base_model"])
|
102 |
+
|
103 |
+
model_data["# params"] = get_n_params(model_data["base_model"])
|
104 |
+
|
105 |
all_data.append(model_data)
|
106 |
|
107 |
dataframe = pd.DataFrame.from_records(all_data)
|
108 |
+
dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
|
109 |
|
110 |
dataframe = dataframe[COLS]
|
111 |
return dataframe
|
112 |
|
113 |
+
def get_eval_table():
|
114 |
+
if repo:
|
115 |
+
print("pulling changes for eval")
|
116 |
+
repo.git_pull()
|
117 |
+
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')]
|
118 |
+
all_evals = []
|
119 |
+
|
120 |
+
for entry in entries:
|
121 |
+
print(entry)
|
122 |
+
if ".json"in entry:
|
123 |
+
file_path = os.path.join("evals/eval_requests", entry)
|
124 |
+
with open(file_path) as fp:
|
125 |
+
data = json.load(fp)
|
126 |
+
|
127 |
+
data["# params"] = get_n_params(data["model"])
|
128 |
+
data["model"] = make_clickable_model(data["model"])
|
129 |
+
|
130 |
+
|
131 |
+
all_evals.append(data)
|
132 |
+
else:
|
133 |
+
# this is a folder
|
134 |
+
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')]
|
135 |
+
for sub_entry in sub_entries:
|
136 |
+
file_path = os.path.join("evals/eval_requests", entry, sub_entry)
|
137 |
+
with open(file_path) as fp:
|
138 |
+
data = json.load(fp)
|
139 |
+
|
140 |
+
data["# params"] = get_n_params(data["model"])
|
141 |
+
data["model"] = make_clickable_model(data["model"])
|
142 |
+
all_evals.append(data)
|
143 |
+
|
144 |
+
|
145 |
+
dataframe = pd.DataFrame.from_records(all_evals)
|
146 |
+
return dataframe[EVAL_COLS]
|
147 |
+
|
148 |
+
|
149 |
leaderboard = get_leaderboard()
|
150 |
+
eval_queue = get_eval_table()
|
151 |
+
|
152 |
+
def is_model_on_hub(model_name) -> bool:
|
153 |
+
try:
|
154 |
+
config = AutoConfig.from_pretrained(model_name)
|
155 |
+
return True
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
print("Could not get the model config from the hub")
|
159 |
+
print(e)
|
160 |
+
return False
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
def add_new_eval(model:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool):
|
165 |
+
# check the model actually exists before adding the eval
|
166 |
+
if not is_model_on_hub(model):
|
167 |
+
print(model, "not found on hub")
|
168 |
+
return
|
169 |
+
print("adding new eval")
|
170 |
+
|
171 |
+
eval_entry = {
|
172 |
+
"model" : model,
|
173 |
+
"private" : private,
|
174 |
+
"8bit_eval" : is_8_bit_eval,
|
175 |
+
"is_delta_weight" : is_delta_weight,
|
176 |
+
"status" : "PENDING"
|
177 |
+
}
|
178 |
+
|
179 |
+
user_name = ""
|
180 |
+
model_path = model
|
181 |
+
if "/" in model:
|
182 |
+
user_name = model.split("/")[0]
|
183 |
+
model_path = model.split("/")[1]
|
184 |
+
|
185 |
+
OUT_DIR=f"eval_requests/{user_name}"
|
186 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
187 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
|
188 |
+
|
189 |
+
with open(out_path, "w") as f:
|
190 |
+
f.write(json.dumps(eval_entry))
|
191 |
+
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
192 |
+
|
193 |
+
api = HfApi()
|
194 |
+
api.upload_file(
|
195 |
+
path_or_fileobj=out_path,
|
196 |
+
path_in_repo=out_path,
|
197 |
+
repo_id=LMEH_REPO,
|
198 |
+
token=H4_TOKEN,
|
199 |
+
repo_type="dataset",
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
def refresh():
|
204 |
+
return get_leaderboard(), get_eval_table()
|
205 |
+
|
206 |
+
|
207 |
|
208 |
block = gr.Blocks()
|
209 |
with block:
|
210 |
+
with gr.Row():
|
211 |
+
gr.Markdown(f"""
|
212 |
+
# 🤗 H4 Model Evaluation leaderboard using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> LMEH benchmark suite </a>.
|
213 |
+
Evaluation is performed against 4 popular benchmarks AI2 Reasoning Challenge, HellaSwag, MMLU, and TruthFul QC MC. To run your own benchmarks, refer to the README in the H4 repo.
|
214 |
+
""")
|
215 |
|
216 |
with gr.Row():
|
217 |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
|
218 |
datatype=TYPES, max_rows=5)
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
with gr.Row():
|
223 |
+
gr.Markdown(f"""
|
224 |
+
# Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster
|
225 |
|
226 |
+
""")
|
227 |
|
228 |
+
with gr.Row():
|
229 |
+
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
|
230 |
+
datatype=EVAL_TYPES, max_rows=5)
|
231 |
+
|
232 |
+
with gr.Row():
|
233 |
+
refresh_button = gr.Button("Refresh")
|
234 |
+
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table])
|
235 |
+
|
236 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
237 |
+
# with gr.Row():
|
238 |
+
# gr.Markdown(f"""# Submit a new model for evaluation""")
|
239 |
+
with gr.Row():
|
240 |
+
model_name_textbox = gr.Textbox(label="model_name")
|
241 |
+
is_8bit_toggle = gr.Checkbox(False, label="8 bit Eval?")
|
242 |
+
private = gr.Checkbox(False, label="Private?")
|
243 |
+
is_delta_weight = gr.Checkbox(False, label="Delta Weights?")
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
submit_button = gr.Button("Submit Eval")
|
247 |
+
submit_button.click(add_new_eval, [model_name_textbox, is_8bit_toggle, private, is_delta_weight])
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
|
|
|
252 |
|
253 |
+
|
254 |
+
print("adding refresh leaderboard")
|
255 |
def refresh_leaderboard():
|
256 |
leaderboard_table = get_leaderboard()
|
257 |
print("leaderboard updated")
|
258 |
|
259 |
scheduler = BackgroundScheduler()
|
260 |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
|
261 |
+
scheduler.start()
|
262 |
+
|
263 |
+
block.launch()
|