Spaces:
Running
on
L40S
Running
on
L40S
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoImageProcessor,
|
7 |
+
AutoModel,
|
8 |
+
)
|
9 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
10 |
+
from transformers.generation import (
|
11 |
+
LogitsProcessorList,
|
12 |
+
PrefixConstrainedLogitsProcessor,
|
13 |
+
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
14 |
+
)
|
15 |
+
import torch
|
16 |
+
from emu3.mllm.processing_emu3 import Emu3Processor
|
17 |
+
|
18 |
+
# Model paths
|
19 |
+
EMU_GEN_HUB = "BAAI/Emu3-Gen"
|
20 |
+
EMU_CHAT_HUB = "BAAI/Emu3-Chat"
|
21 |
+
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
|
22 |
+
|
23 |
+
# Prepare models and processors
|
24 |
+
# Emu3-Gen model and processor
|
25 |
+
gen_model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
EMU_GEN_HUB,
|
27 |
+
device_map="cuda:0",
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
attn_implementation="flash_attention_2",
|
30 |
+
trust_remote_code=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
gen_tokenizer = AutoTokenizer.from_pretrained(EMU_GEN_HUB, trust_remote_code=True)
|
34 |
+
gen_image_processor = AutoImageProcessor.from_pretrained(
|
35 |
+
VQ_HUB, trust_remote_code=True
|
36 |
+
)
|
37 |
+
gen_image_tokenizer = AutoModel.from_pretrained(
|
38 |
+
VQ_HUB, device_map="cuda:0", trust_remote_code=True
|
39 |
+
).eval()
|
40 |
+
gen_processor = Emu3Processor(gen_image_processor, gen_image_tokenizer, gen_tokenizer)
|
41 |
+
|
42 |
+
# Emu3-Chat model and processor
|
43 |
+
chat_model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
EMU_CHAT_HUB,
|
45 |
+
device_map="cuda:0",
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
attn_implementation="flash_attention_2",
|
48 |
+
trust_remote_code=True,
|
49 |
+
)
|
50 |
+
|
51 |
+
chat_tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
52 |
+
chat_image_processor = AutoImageProcessor.from_pretrained(
|
53 |
+
VQ_HUB, trust_remote_code=True
|
54 |
+
)
|
55 |
+
chat_image_tokenizer = AutoModel.from_pretrained(
|
56 |
+
VQ_HUB, device_map="cuda:0", trust_remote_code=True
|
57 |
+
).eval()
|
58 |
+
chat_processor = Emu3Processor(
|
59 |
+
chat_image_processor, chat_image_tokenizer, chat_tokenizer
|
60 |
+
)
|
61 |
+
|
62 |
+
def generate_image(prompt):
|
63 |
+
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
|
64 |
+
NEGATIVE_PROMPT = (
|
65 |
+
"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, "
|
66 |
+
"fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, "
|
67 |
+
"signature, watermark, username, blurry."
|
68 |
+
)
|
69 |
+
|
70 |
+
classifier_free_guidance = 3.0
|
71 |
+
full_prompt = prompt + POSITIVE_PROMPT
|
72 |
+
|
73 |
+
kwargs = dict(
|
74 |
+
mode="G",
|
75 |
+
ratio="1:1",
|
76 |
+
image_area=gen_model.config.image_area,
|
77 |
+
return_tensors="pt",
|
78 |
+
)
|
79 |
+
pos_inputs = gen_processor(text=full_prompt, **kwargs)
|
80 |
+
neg_inputs = gen_processor(text=NEGATIVE_PROMPT, **kwargs)
|
81 |
+
|
82 |
+
# Prepare hyperparameters
|
83 |
+
GENERATION_CONFIG = GenerationConfig(
|
84 |
+
use_cache=True,
|
85 |
+
eos_token_id=gen_model.config.eos_token_id,
|
86 |
+
pad_token_id=gen_model.config.pad_token_id,
|
87 |
+
max_new_tokens=40960,
|
88 |
+
do_sample=True,
|
89 |
+
top_k=2048,
|
90 |
+
)
|
91 |
+
|
92 |
+
h, w = pos_inputs.image_size[0]
|
93 |
+
constrained_fn = gen_processor.build_prefix_constrained_fn(h, w)
|
94 |
+
logits_processor = LogitsProcessorList(
|
95 |
+
[
|
96 |
+
UnbatchedClassifierFreeGuidanceLogitsProcessor(
|
97 |
+
classifier_free_guidance,
|
98 |
+
gen_model,
|
99 |
+
unconditional_ids=neg_inputs.input_ids.to("cuda:0"),
|
100 |
+
),
|
101 |
+
PrefixConstrainedLogitsProcessor(
|
102 |
+
constrained_fn,
|
103 |
+
num_beams=1,
|
104 |
+
),
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Generate
|
109 |
+
outputs = gen_model.generate(
|
110 |
+
pos_inputs.input_ids.to("cuda:0"),
|
111 |
+
generation_config=GENERATION_CONFIG,
|
112 |
+
logits_processor=logits_processor,
|
113 |
+
)
|
114 |
+
|
115 |
+
mm_list = gen_processor.decode(outputs[0])
|
116 |
+
for idx, im in enumerate(mm_list):
|
117 |
+
if isinstance(im, Image.Image):
|
118 |
+
return im
|
119 |
+
return None
|
120 |
+
|
121 |
+
def vision_language_understanding(image, text):
|
122 |
+
inputs = chat_processor(
|
123 |
+
text=text,
|
124 |
+
image=image,
|
125 |
+
mode="U",
|
126 |
+
padding_side="left",
|
127 |
+
padding="longest",
|
128 |
+
return_tensors="pt",
|
129 |
+
)
|
130 |
+
|
131 |
+
# Prepare hyperparameters
|
132 |
+
GENERATION_CONFIG = GenerationConfig(
|
133 |
+
pad_token_id=chat_tokenizer.pad_token_id,
|
134 |
+
bos_token_id=chat_tokenizer.bos_token_id,
|
135 |
+
eos_token_id=chat_tokenizer.eos_token_id,
|
136 |
+
max_new_tokens=320,
|
137 |
+
)
|
138 |
+
|
139 |
+
# Generate
|
140 |
+
outputs = chat_model.generate(
|
141 |
+
inputs.input_ids.to("cuda:0"),
|
142 |
+
generation_config=GENERATION_CONFIG,
|
143 |
+
max_new_tokens=320,
|
144 |
+
)
|
145 |
+
|
146 |
+
outputs = outputs[:, inputs.input_ids.shape[-1] :]
|
147 |
+
response = chat_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
148 |
+
return response
|
149 |
+
|
150 |
+
def chat(history, user_input, user_image):
|
151 |
+
if user_image is not None:
|
152 |
+
# Use Emu3-Chat for vision-language understanding
|
153 |
+
response = vision_language_understanding(user_image, user_input)
|
154 |
+
# Append the user input and response to the history
|
155 |
+
history = history + [(user_input, response)]
|
156 |
+
else:
|
157 |
+
# Use Emu3-Gen for image generation
|
158 |
+
generated_image = generate_image(user_input)
|
159 |
+
if generated_image is not None:
|
160 |
+
# Append the user input and generated image to the history
|
161 |
+
history = history + [(user_input, generated_image)]
|
162 |
+
else:
|
163 |
+
# If image generation failed, respond with an error message
|
164 |
+
history = history + [
|
165 |
+
(user_input, "Sorry, I could not generate an image.")
|
166 |
+
]
|
167 |
+
return history, history, gr.update(value=None)
|
168 |
+
|
169 |
+
def clear_input():
|
170 |
+
return gr.update(value="")
|
171 |
+
|
172 |
+
with gr.Blocks() as demo:
|
173 |
+
gr.Markdown("# Emu3 Chatbot Demo")
|
174 |
+
gr.Markdown(
|
175 |
+
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models."
|
176 |
+
)
|
177 |
+
|
178 |
+
chatbot = gr.Chatbot()
|
179 |
+
state = gr.State([])
|
180 |
+
with gr.Row():
|
181 |
+
with gr.Column(scale=0.85):
|
182 |
+
user_input = gr.Textbox(
|
183 |
+
show_label=False, placeholder="Type your message here...", lines=2
|
184 |
+
).style(container=False)
|
185 |
+
with gr.Column(scale=0.15, min_width=0):
|
186 |
+
submit_btn = gr.Button("Send")
|
187 |
+
user_image = gr.Image(
|
188 |
+
source="upload", type="pil", label="Upload an image (optional)"
|
189 |
+
)
|
190 |
+
|
191 |
+
submit_btn.click(
|
192 |
+
chat,
|
193 |
+
inputs=[state, user_input, user_image],
|
194 |
+
outputs=[chatbot, state, user_image],
|
195 |
+
).then(fn=clear_input, inputs=[], outputs=user_input)
|
196 |
+
user_input.submit(
|
197 |
+
chat,
|
198 |
+
inputs=[state, user_input, user_image],
|
199 |
+
outputs=[chatbot, state, user_image],
|
200 |
+
).then(fn=clear_input, inputs=[], outputs=user_input)
|
201 |
+
|
202 |
+
demo.launch()
|