import gradio as gr from transformers import AutoModelForCausalLM,AutoProcessor,Qwen2VLForConditionalGeneration from PIL import Image import os import tempfile import torch from pathlib import Path import secrets model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") math_messages = [] def process_image(image, shouldConvert=False): global math_messages math_messages = [] # reset when upload image uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str( Path(tempfile.gettempdir()) / "gradio" ) os.makedirs(uploaded_file_dir, exist_ok=True) name = f"tmp{secrets.token_hex(20)}.jpg" filename = os.path.join(uploaded_file_dir, name) if shouldConvert: new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255)) new_img.paste(image, (0, 0), mask=image) image = new_img image.save(filename) messages = [{ 'role': 'system', 'content': [{'text': 'You are a helpful assistant.'}] }, { 'role': 'user', 'content': [ {'image': f'file://{filename}'}, {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'} ] }] text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( text = [text_prompt], images = [image], padding = True, return_tensors = "pt" ) output_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids) ] output_text = processor.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) os.remove(filename) return output_text def get_math_response(image_description, user_question): global math_messages if not math_messages: math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'}) math_messages = math_messages[:1] if image_description is not None: content = f'Image description: {image_description}\n\n' else: content = '' query = f"{content}User question: {user_question}" math_messages.append({'role': 'user', 'content': query}) from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2-Math-72B-Instruct" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) text = tokenizer.apply_chat_template( math_messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] answer = None for resp in response: if resp.output is None: continue answer = resp.output.choices[0].message.content yield answer.replace("\\", "\\\\") print(f'query: {query}\nanswer: {answer}') if answer is None: math_messages.pop() else: math_messages.append({'role': 'assistant', 'content': answer}) def math_chat_bot(image, sketchpad, question, state): current_tab_index = state["tab_index"] image_description = None # Upload if current_tab_index == 0: if image is not None: image_description = process_image(image) # Sketch elif current_tab_index == 1: print(sketchpad) if sketchpad and sketchpad["composite"]: image_description = process_image(sketchpad["composite"], True) yield from get_math_response(image_description, question) css = """ #qwen-md .katex-display { display: inline; } #qwen-md .katex-display>.katex { display: inline; } #qwen-md .katex-display>.katex>.katex-html { display: inline; } """ def tabs_select(e: gr.SelectData, _state): _state["tab_index"] = e.index # 创建Gradio接口 with gr.Blocks(css=css) as demo: gr.HTML("""\
""" """