File size: 1,822 Bytes
ff46577
1247d89
 
ff46577
1247d89
 
 
31001c6
 
939e397
1247d89
 
 
ff46577
1247d89
 
 
 
aa204f5
ff46577
 
1247d89
 
31001c6
1247d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff46577
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# Initialize model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3.5-mini-instruct", 
    device_map="cpu",
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")

# Create pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer
)

# Generation arguments
generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}

def chat(message, history, system_prompt):
    # Prepare messages
    messages = [
        {"role": "system", "content": system_prompt},
    ]
    
    # Add history to messages
    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    
    # Generate response
    output = pipe(messages, **generation_args)
    response = output[0]['generated_text']
    
    return response

# Gradio interface
with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    system_prompt = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.")

    def respond(message, chat_history):
        bot_message = chat(message, chat_history, system_prompt.value)
        chat_history.append((message, bot_message))
        return "", chat_history

    msg.submit(respond, [msg, chatbot], [msg, chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()