Awlly commited on
Commit
1f670ae
·
verified ·
1 Parent(s): 28e3315

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md CHANGED
@@ -10,3 +10,82 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+ ## NLP App Hugging Face's logo
15
+ Hugging Face
16
+ # Streamlit app with computer vision 💡
17
+ Elbrus Bootcamp | Phase-2 | Team Project
18
+
19
+ ## Team🧑🏻‍💻
20
+ 1. [Awlly](https://github.com/Awlly)
21
+ 2. [sakoser](https://github.com/sakoser)
22
+ 3. [whoisida]https://github.com/whoisida
23
+
24
+ ## Task 📌lassifi
25
+ Create a service that classifies movie reviews into good, neutral and bad categories, a service that classifies user input as toxic or non-toxic, as well as a GPT 2 based text generation service that was trained to emulate a certain author’s writing.
26
+
27
+ ## Contents 📝
28
+ 1. Classifies movie reviewsusing LSTM,ruBert,BOW 💨 [Dataset](https://drive.google.com/file/d/1c92sz81bEfOw-rutglKpmKGm6rySmYbt/view?usp=sharing)
29
+ 2. classifies user input as toxic or non-toxi using ruBert-tiny-toxicity 📑 [Dataset](https://drive.google.com/file/d/1O7orH9CrNEhnbnA5KjXji8sgrn6iD5n-/view?usp=drive_link)
30
+ 3. GPT 2 based text generation service
31
+
32
+ ## Deployment 🎈
33
+ The service is implemented on [Hugging Face](https://huggingface.co/spaces/Awlly/NLP_app)
34
+
35
+ ## Libraries 📖
36
+ ```python
37
+ import os
38
+ import unicodedata
39
+ import nltk
40
+ from dataclasses import dataclass
41
+ import joblib
42
+ import numpy as np
43
+ import matplotlib.pyplot as plt
44
+ import torch
45
+ import torch.nn as nn
46
+ import torch.nn.functional as F
47
+ import torch.optim as optim
48
+ from torch.utils.data import DataLoader, TensorDataset
49
+ from torchvision.datasets import ImageFolder
50
+ from torchvision import datasets
51
+ from torchvision import transforms as T
52
+ from torchvision.io import read_image
53
+ from torch.utils.data import Dataset, random_split
54
+ import torchutils as tu
55
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
56
+ from typing import Tuple
57
+ from tqdm import tqdm
58
+ from transformers import AutoModel, AutoTokenizer
59
+ from transformers import AutoModelForSequenceClassification
60
+ import pydensecrf.densecrf as dcrf
61
+ import pydensecrf.utils as dcrf_utils
62
+ from preprocessing import data_preprocessing
63
+ import streamlit as st
64
+ import string
65
+ from sklearn.linear_model import LogisticRegression
66
+ import re
67
+
68
+
69
+
70
+
71
+ from preprocessing import preprocess_single_string
72
+ ```
73
+
74
+
75
+ from preprocessing import data_preprocessing
76
+
77
+
78
+
79
+
80
+ ## Guide 📜
81
+ #### How to run locally?
82
+
83
+ 1. To create a Python virtual environment for running the code, enter:
84
+
85
+ ``python3 -m venv my-env``
86
+
87
+ 2. Activate the new environment:
88
+
89
+ * Windows: ```my-env\Scripts\activate.bat```
90
+ * macOS and Linux: ```source my-env/bin/activate```
91
+