Spaces:
Sleeping
Sleeping
File size: 8,002 Bytes
88c0b9b 03adfb9 88c0b9b 03adfb9 88c0b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import yaml
import logging
import nltk
import torch
import torchaudio
from torchaudio.transforms import SpeedPerturbation
from APIs import WRITE_AUDIO, LOUDNESS_NORM
from utils import fade, get_service_port
from flask import Flask, request, jsonify
with open('config.yaml', 'r') as file:
config = yaml.safe_load(file)
# Configure the logging format and level
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Create a FileHandler for the log file
os.makedirs('services_logs', exist_ok=True)
log_filename = 'services_logs/Wav-API.log'
file_handler = logging.FileHandler(log_filename, mode='w')
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
# Add the FileHandler to the root logger
logging.getLogger('').addHandler(file_handler)
"""
Initialize the AudioCraft models here
"""
from audiocraft.models import AudioGen, MusicGen
tta_model_size = config['AudioCraft']['tta_model_size']
tta_model = AudioGen.get_pretrained(f'facebook/audiogen-{tta_model_size}')
logging.info(f'AudioGen ({tta_model_size}) is loaded ...')
ttm_model_size = config['AudioCraft']['ttm_model_size']
ttm_model = MusicGen.get_pretrained(f'facebook/musicgen-{ttm_model_size}')
logging.info(f'MusicGen ({ttm_model_size}) is loaded ...')
"""
Initialize the BarkModel here
"""
from transformers import BarkModel, AutoProcessor
SPEED = float(config['Text-to-Speech']['speed'])
speed_perturb = SpeedPerturbation(32000, [SPEED])
tts_model = BarkModel.from_pretrained("suno/bark")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tts_model = tts_model.to(device)
tts_model = tts_model.to_bettertransformer() # Flash attention
SAMPLE_RATE = tts_model.generation_config.sample_rate
SEMANTIC_TEMPERATURE = 0.9
COARSE_TEMPERATURE = 0.5
FINE_TEMPERATURE = 0.5
processor = AutoProcessor.from_pretrained("suno/bark")
logging.info('Bark model is loaded ...')
"""
Initialize the VoiceFixer model here
"""
from voicefixer import VoiceFixer
vf = VoiceFixer()
logging.info('VoiceFixer is loaded ...')
"""
Initalize the VoiceParser model here
"""
from VoiceParser.model import VoiceParser
vp_device = config['Voice-Parser']['device']
vp = VoiceParser(device=vp_device)
logging.info('VoiceParser is loaded ...')
app = Flask(__name__)
@app.route('/generate_audio', methods=['POST'])
def generate_audio():
# Receive the text from the POST request
data = request.json
text = data['text']
length = float(data.get('length', 5.0))
volume = float(data.get('volume', -35))
output_wav = data.get('output_wav', 'out.wav')
logging.info(f'TTA (AudioGen): Prompt: {text}, length: {length} seconds, volume: {volume} dB')
try:
tta_model.set_generation_params(duration=length)
wav = tta_model.generate([text])
wav = torchaudio.functional.resample(wav, orig_freq=16000, new_freq=32000)
wav = wav.squeeze().cpu().detach().numpy()
wav = fade(LOUDNESS_NORM(wav, volumn=volume))
WRITE_AUDIO(wav, name=output_wav)
# Return success message and the filename of the generated audio
return jsonify({'message': f'Text-to-Audio generated successfully | {text}', 'file': output_wav})
except Exception as e:
return jsonify({'API error': str(e)}), 500
@app.route('/generate_music', methods=['POST'])
def generate_music():
# Receive the text from the POST request
data = request.json
text = data['text']
length = float(data.get('length', 5.0))
volume = float(data.get('volume', -35))
output_wav = data.get('output_wav', 'out.wav')
logging.info(f'TTM (MusicGen): Prompt: {text}, length: {length} seconds, volume: {volume} dB')
try:
ttm_model.set_generation_params(duration=length)
wav = ttm_model.generate([text])
wav = wav[0][0].cpu().detach().numpy()
wav = fade(LOUDNESS_NORM(wav, volumn=volume))
WRITE_AUDIO(wav, name=output_wav)
# Return success message and the filename of the generated audio
return jsonify({'message': f'Text-to-Music generated successfully | {text}', 'file': output_wav})
except Exception as e:
# Return error message if something goes wrong
return jsonify({'API error': str(e)}), 500
@app.route('/generate_speech', methods=['POST'])
def generate_speech():
# Receive the text from the POST request
data = request.json
text = data['text']
speaker_id = data['speaker_id']
speaker_npz = data['speaker_npz']
volume = float(data.get('volume', -35))
output_wav = data.get('output_wav', 'out.wav')
logging.info(f'TTS (Bark): Speaker: {speaker_id}, Volume: {volume} dB, Prompt: {text}')
try:
# Generate audio using the global pipe object
text = text.replace('\n', ' ').strip()
sentences = nltk.sent_tokenize(text)
silence = torch.zeros(int(0.1 * SAMPLE_RATE), device=device).unsqueeze(0) # 0.1 second of silence
pieces = []
for sentence in sentences:
inputs = processor(sentence, voice_preset=speaker_npz).to(device)
# NOTE: you must run the line below, otherwise you will see the runtime error
# RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
inputs['history_prompt']['coarse_prompt'] = inputs['history_prompt']['coarse_prompt'].transpose(0, 1).contiguous().transpose(0, 1)
with torch.inference_mode():
# TODO: min_eos_p?
output = tts_model.generate(
**inputs,
do_sample = True,
semantic_temperature = SEMANTIC_TEMPERATURE,
coarse_temperature = COARSE_TEMPERATURE,
fine_temperature = FINE_TEMPERATURE
)
pieces += [output, silence]
result_audio = torch.cat(pieces, dim=1)
wav_tensor = result_audio.to(dtype=torch.float32).cpu()
wav = torchaudio.functional.resample(wav_tensor, orig_freq=SAMPLE_RATE, new_freq=32000)
wav = speed_perturb(wav.float())[0].squeeze(0)
wav = wav.numpy()
wav = LOUDNESS_NORM(wav, volumn=volume)
WRITE_AUDIO(wav, name=output_wav)
# Return success message and the filename of the generated audio
return jsonify({'message': f'Text-to-Speech generated successfully | {speaker_id}: {text}', 'file': output_wav})
except Exception as e:
# Return error message if something goes wrong
return jsonify({'API error': str(e)}), 500
@app.route('/fix_audio', methods=['POST'])
def fix_audio():
# Receive the text from the POST request
data = request.json
processfile = data['processfile']
logging.info(f'Fixing {processfile} ...')
try:
vf.restore(input=processfile, output=processfile, cuda=True, mode=0)
# Return success message and the filename of the generated audio
return jsonify({'message': 'Speech restored successfully', 'file': processfile})
except Exception as e:
# Return error message if something goes wrong
return jsonify({'API error': str(e)}), 500
@app.route('/parse_voice', methods=['POST'])
def parse_voice():
# Receive the text from the POST request
data = request.json
wav_path = data['wav_path']
out_dir = data['out_dir']
logging.info(f'Parsing {wav_path} ...')
try:
vp.extract_acoustic_embed(wav_path, out_dir)
# Return success message and the filename of the generated audio
return jsonify({'message': f'Sucessfully parsed {wav_path}'})
except Exception as e:
# Return error message if something goes wrong
return jsonify({'API error': str(e)}), 500
if __name__ == '__main__':
service_port = get_service_port()
app.run(debug=False, port=service_port)
|