Atom Bioworks
commited on
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import random
|
3 |
+
import math
|
4 |
+
|
5 |
+
from sklearn.metrics import *
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
|
14 |
+
def word2idx(word, words):
|
15 |
+
if word in words.keys():
|
16 |
+
return int(words[word])
|
17 |
+
|
18 |
+
return 0
|
19 |
+
|
20 |
+
def pad_seq(dataset, max_len):
|
21 |
+
output = []
|
22 |
+
for seq in dataset:
|
23 |
+
pad = np.zeros(max_len)
|
24 |
+
pad[:len(seq)] = seq
|
25 |
+
output.append(pad)
|
26 |
+
|
27 |
+
return np.array(output)
|
28 |
+
|
29 |
+
def str2bool(seq):
|
30 |
+
out = []
|
31 |
+
for s in seq:
|
32 |
+
if s == "positive":
|
33 |
+
out.append(1)
|
34 |
+
elif s == "negative":
|
35 |
+
out.append(0)
|
36 |
+
|
37 |
+
return np.array(out)
|
38 |
+
|
39 |
+
class API_Dataset(Dataset):
|
40 |
+
def __init__(self, apta, esm_prot, y, apta_attn_mask, prot_attn_mask):
|
41 |
+
super(Dataset, self).__init__()
|
42 |
+
|
43 |
+
self.apta = np.array(apta, dtype=np.int64)
|
44 |
+
self.esm_prot = np.array(esm_prot, dtype=np.int64)
|
45 |
+
self.y = np.array(y, dtype=np.int64)
|
46 |
+
self.apta_attn_mask = np.array(apta_attn_mask)
|
47 |
+
self.prot_attn_mask = np.array(prot_attn_mask)
|
48 |
+
self.len = len(self.apta)
|
49 |
+
|
50 |
+
def __len__(self):
|
51 |
+
return self.len
|
52 |
+
|
53 |
+
def __getitem__(self, index):
|
54 |
+
return torch.tensor(self.apta[index], dtype=torch.int64), torch.tensor(self.esm_prot[index], dtype=torch.int64), torch.tensor(self.y[index], dtype=torch.int64), torch.tensor(self.apta_attn_mask[index], dtype=torch.int64), torch.tensor(self.prot_attn_mask[index], dtype=torch.int64)
|
55 |
+
|
56 |
+
def find_opt_threshold(target, pred):
|
57 |
+
result = 0
|
58 |
+
best = 0
|
59 |
+
|
60 |
+
for i in range(0, 1000):
|
61 |
+
pred_threshold = np.where(pred > i/1000, 1, 0)
|
62 |
+
now = f1_score(target, pred_threshold)
|
63 |
+
if now > best:
|
64 |
+
result = i/1000
|
65 |
+
best = now
|
66 |
+
|
67 |
+
return result
|
68 |
+
|
69 |
+
def argument_seqset(seqset):
|
70 |
+
arg_seqset = []
|
71 |
+
for s, ss in seqset:
|
72 |
+
arg_seqset.append([s, ss])
|
73 |
+
|
74 |
+
arg_seqset.append([s[::-1], ss[::-1]])
|
75 |
+
|
76 |
+
return arg_seqset
|
77 |
+
|
78 |
+
def augment_apis(apta, prot, ys):
|
79 |
+
aug_apta = []
|
80 |
+
aug_prot = []
|
81 |
+
aug_y = []
|
82 |
+
for a, p, y in zip(apta, prot, ys):
|
83 |
+
aug_apta.append(a)
|
84 |
+
aug_prot.append(p)
|
85 |
+
aug_y.append(y)
|
86 |
+
|
87 |
+
aug_apta.append(a[::-1])
|
88 |
+
aug_prot.append(p)
|
89 |
+
aug_y.append(y)
|
90 |
+
|
91 |
+
return np.array(aug_apta), np.array(aug_prot), np.array(aug_y)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def load_data_source(filepath):
|
96 |
+
with open(filepath,"rb") as fr:
|
97 |
+
dataset = pickle.load(fr)
|
98 |
+
dataset_train = np.array(dataset[dataset["dataset"]=="training dataset"])
|
99 |
+
dataset_test = np.array(dataset[dataset["dataset"]=="test dataset"])
|
100 |
+
dataset_bench = np.array(dataset[dataset['dataset']=='benchmark dataset'])
|
101 |
+
|
102 |
+
return dataset_train, dataset_test, dataset_bench
|
103 |
+
|
104 |
+
|
105 |
+
def get_dataset(filepath, prot_max_len, n_prot_vocabs, prot_words):
|
106 |
+
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
|
107 |
+
|
108 |
+
|
109 |
+
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
|
110 |
+
datasets_train = [rna2vec(arg_apta), tokenize_sequences(arg_prot, prot_max_len, n_prot_vocabs, prot_words), str2bool(arg_y)]
|
111 |
+
datasets_test = [rna2vec(dataset_test[:, 0]), tokenize_sequences(dataset_test[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_test[:, 2])]
|
112 |
+
datasets_bench = [rna2vec(dataset_bench[:, 0]), tokenize_sequences(dataset_bench[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_bench[:, 2])]
|
113 |
+
|
114 |
+
return datasets_train, datasets_test, datasets_bench
|
115 |
+
|
116 |
+
|
117 |
+
def get_esm_dataset(filepath, batch_converter, alphabet):
|
118 |
+
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
|
119 |
+
|
120 |
+
# arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
|
121 |
+
# arg_prot is a np.array of strings (4640,) -> convert this to np.array of size (2x4640) where first row is a label
|
122 |
+
|
123 |
+
arg_apta, arg_prot, arg_y = dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2]
|
124 |
+
arg_apta, arg_prot, arg_y = augment_apis(arg_apta, arg_prot, arg_y)
|
125 |
+
|
126 |
+
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)]
|
127 |
+
_, _, prot_tokens = batch_converter(train_inputs)
|
128 |
+
datasets_train = [rna2vec(arg_apta), prot_tokens, str2bool(arg_y)]
|
129 |
+
|
130 |
+
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])]
|
131 |
+
_, _, test_prot_tokens = batch_converter(test_inputs)
|
132 |
+
datasets_test = [rna2vec(dataset_test[:, 0]), test_prot_tokens, str2bool(dataset_test[:, 2])]
|
133 |
+
|
134 |
+
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])]
|
135 |
+
_, _, bench_prot_tokens = batch_converter(bench_inputs)
|
136 |
+
# truncating
|
137 |
+
bench_prot_tokenized = bench_prot_tokens[:, :1678]
|
138 |
+
# padding
|
139 |
+
prot_ex = torch.ones((bench_prot_tokenized.shape[0], 1678), dtype=torch.int64)*alphabet.padding_idx
|
140 |
+
prot_ex[:, :bench_prot_tokenized.shape[1]] = bench_prot_tokenized
|
141 |
+
datasets_bench = [rna2vec(dataset_bench[:, 0]), prot_ex, str2bool(dataset_bench[:, 2])]
|
142 |
+
|
143 |
+
return datasets_train, datasets_test, datasets_bench
|
144 |
+
|
145 |
+
def get_nt_esm_dataset(filepath, nt_tokenizer, batch_converter, alphabet):
|
146 |
+
dataset_train, dataset_test, dataset_bench = load_data_source(filepath)
|
147 |
+
|
148 |
+
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2])
|
149 |
+
# arg_prot is a np.array of strings (4640,) -> convert this to np.array of size (2x4640) where first row is a label
|
150 |
+
max_length = 275#nt_tokenizer.model_max_length
|
151 |
+
|
152 |
+
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)]
|
153 |
+
_, _, prot_tokens = batch_converter(train_inputs)
|
154 |
+
apta_toks = nt_tokenizer.batch_encode_plus(arg_apta, return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
|
155 |
+
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
|
156 |
+
prot_attention_mask = prot_tokens != alphabet.padding_idx
|
157 |
+
# datasets_train = [apta_toks, prot_tokens, str2bool(arg_y)]
|
158 |
+
datasets_train = [apta_toks, prot_tokens, str2bool(arg_y), apta_attention_mask, prot_attention_mask]
|
159 |
+
|
160 |
+
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])]
|
161 |
+
_, _, test_prot_tokens = batch_converter(test_inputs)
|
162 |
+
prot_ex = torch.ones((test_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx
|
163 |
+
prot_ex[:, :test_prot_tokens.shape[1]] = test_prot_tokens
|
164 |
+
apta_toks = nt_tokenizer.batch_encode_plus(dataset_test[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
|
165 |
+
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
|
166 |
+
prot_attention_mask = prot_ex != alphabet.padding_idx
|
167 |
+
datasets_test = [apta_toks, prot_ex, str2bool(dataset_test[:, 2]), apta_attention_mask, prot_attention_mask]
|
168 |
+
|
169 |
+
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])]
|
170 |
+
_, _, bench_prot_tokens = batch_converter(bench_inputs)
|
171 |
+
# padding
|
172 |
+
prot_ex = torch.ones((bench_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx
|
173 |
+
prot_ex[:, :bench_prot_tokens.shape[1]] = bench_prot_tokens
|
174 |
+
apta_toks = nt_tokenizer.batch_encode_plus(dataset_bench[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids']
|
175 |
+
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id
|
176 |
+
prot_attention_mask = prot_ex != alphabet.padding_idx
|
177 |
+
datasets_bench = [apta_toks, prot_ex, str2bool(dataset_bench[:, 2]), apta_attention_mask, prot_attention_mask]
|
178 |
+
|
179 |
+
return datasets_train, datasets_test, datasets_bench
|
180 |
+
|
181 |
+
def get_scores(target, pred):
|
182 |
+
threshold = find_opt_threshold(target, pred)
|
183 |
+
pred_threshold = np.where(pred > threshold, 1, 0)
|
184 |
+
acc = accuracy_score(target, pred_threshold)
|
185 |
+
roc_auc = roc_auc_score(target, pred)
|
186 |
+
mcc = matthews_corrcoef(target, pred_threshold)
|
187 |
+
f1 = f1_score(target, pred_threshold)
|
188 |
+
pr_auc = average_precision_score(target, pred)
|
189 |
+
cls_report = classification_report(target, pred_threshold)
|
190 |
+
scores = {
|
191 |
+
'threshold': threshold,
|
192 |
+
'acc': acc,
|
193 |
+
'roc_auc': roc_auc,
|
194 |
+
'mcc': mcc,
|
195 |
+
'f1': f1,
|
196 |
+
'pr_auc': pr_auc,
|
197 |
+
'cls_report': cls_report
|
198 |
+
}
|
199 |
+
return scores
|