Atom Bioworks
commited on
Create encoders.py
Browse files- encoders.py +264 -0
encoders.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn.utils.weight_norm import weight_norm
|
5 |
+
import math
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class cross_attn_block(nn.Module):
|
9 |
+
def __init__(self, embed_dim, n_heads, dropout):
|
10 |
+
super().__init__()
|
11 |
+
self.heads = n_heads
|
12 |
+
self.mha = nn.MultiheadAttention(embed_dim, n_heads, dropout, batch_first=True)
|
13 |
+
self.ln_apt = nn.LayerNorm(embed_dim)
|
14 |
+
self.ln_prot = nn.LayerNorm(embed_dim)
|
15 |
+
self.ln_out = nn.LayerNorm(embed_dim)
|
16 |
+
self.linear = nn.Linear(embed_dim, embed_dim)
|
17 |
+
|
18 |
+
def forward(self, embeddings_x, embeddings_y, x_t, y_t):
|
19 |
+
|
20 |
+
# compute attention masks
|
21 |
+
attn_mask = generate_3d_mask(y_t, x_t, self.heads)
|
22 |
+
|
23 |
+
# apply layer norms
|
24 |
+
embeddings_x_n = self.ln_apt(embeddings_x)
|
25 |
+
embeddings_y_n = self.ln_prot(embeddings_y)
|
26 |
+
|
27 |
+
# perform cross-attention
|
28 |
+
reps = embeddings_y + self.mha(embeddings_y_n, embeddings_x_n, embeddings_x_n, attn_mask=attn_mask)[0]
|
29 |
+
return reps + self.linear(self.ln_out(reps))
|
30 |
+
|
31 |
+
class self_attn_block(nn.Module):
|
32 |
+
def __init__(self, d_embed, heads, dropout):
|
33 |
+
super().__init__()
|
34 |
+
# self.l1 = nn.Linear(d_linear, d_linear)
|
35 |
+
self.heads = heads
|
36 |
+
self.ln1 = nn.LayerNorm(d_embed)
|
37 |
+
self.ln2 = nn.LayerNorm(d_embed)
|
38 |
+
self.mha = nn.MultiheadAttention(d_embed, self.heads, dropout, batch_first=True)
|
39 |
+
self.linear = nn.Linear(d_embed, d_embed)
|
40 |
+
|
41 |
+
def forward(self, embeddings_x, x_t):
|
42 |
+
|
43 |
+
# compute attention masks
|
44 |
+
# attn_mask = generate_3d_mask(x_t, x_t, self.heads)
|
45 |
+
# apply layer norm
|
46 |
+
embeddings_x_n = self.ln1(embeddings_x)
|
47 |
+
reps = embeddings_x + self.mha(embeddings_x_n, embeddings_x_n, embeddings_x_n, key_padding_mask=~x_t)[0]
|
48 |
+
return reps + self.linear(self.ln2(reps))
|
49 |
+
|
50 |
+
|
51 |
+
class AptaBLE(nn.Module):
|
52 |
+
def __init__(self, apta_encoder, prot_encoder, dropout):
|
53 |
+
super(AptaBLE, self).__init__()
|
54 |
+
|
55 |
+
#hyperparameters
|
56 |
+
self.apta_encoder = apta_encoder
|
57 |
+
self.prot_encoder = prot_encoder
|
58 |
+
|
59 |
+
self.flatten = nn.Flatten()
|
60 |
+
self.prot_reshape = nn.Linear(1280, 512)
|
61 |
+
self.apta_keep = nn.Linear(512, 512)
|
62 |
+
|
63 |
+
self.l1 = nn.Linear(1024, 1024)
|
64 |
+
self.l2 = nn.Linear(1024, 512)
|
65 |
+
self.l3 = nn.Linear(512, 256)
|
66 |
+
self.l4 = nn.Linear(256, 1)
|
67 |
+
self.can = CAN(512, 8, 1, 'mean_all_tok')
|
68 |
+
self.bn1 = nn.BatchNorm1d(1024)
|
69 |
+
self.bn2 = nn.BatchNorm1d(512)
|
70 |
+
self.bn3 = nn.BatchNorm1d(256)
|
71 |
+
self.relu = nn.ReLU()
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def forward(self, apta_in, esm_prot, apta_attn, prot_attn):
|
76 |
+
apta = self.apta_encoder(apta_in, apta_attn, apta_attn, output_hidden_states=True)['hidden_states'][-1] # output: (BS X #apt_toks x apt_embed_dim), encoder outputs (BS x MLM & sec. structure feature embeddings)
|
77 |
+
|
78 |
+
prot = self.prot_encoder(esm_prot, repr_layers=[33], return_contacts=False)['representations'][33]
|
79 |
+
|
80 |
+
prot = self.prot_reshape(prot)
|
81 |
+
apta = self.apta_keep(apta)
|
82 |
+
|
83 |
+
output, cross_map, prot_map, apta_map = self.can(prot, apta, prot_attn, apta_attn)
|
84 |
+
output = self.relu(self.l1(output))
|
85 |
+
output = self.bn1(output)
|
86 |
+
output = self.relu(self.l2(output))
|
87 |
+
output = self.bn2(output)
|
88 |
+
output = self.relu(self.l3(output))
|
89 |
+
output = self.bn3(output)
|
90 |
+
output = self.l4(output)
|
91 |
+
output = torch.sigmoid(output)
|
92 |
+
|
93 |
+
return output, cross_map, prot_map, apta_map
|
94 |
+
|
95 |
+
def find_opt_threshold(target, pred):
|
96 |
+
result = 0
|
97 |
+
best = 0
|
98 |
+
|
99 |
+
for i in range(0, 1000):
|
100 |
+
pred_threshold = np.where(pred > i/1000, 1, 0)
|
101 |
+
now = f1_score(target, pred_threshold)
|
102 |
+
if now > best:
|
103 |
+
result = i/1000
|
104 |
+
best = now
|
105 |
+
|
106 |
+
return result
|
107 |
+
|
108 |
+
def argument_seqset(seqset):
|
109 |
+
arg_seqset = []
|
110 |
+
for s, ss in seqset:
|
111 |
+
arg_seqset.append([s, ss])
|
112 |
+
|
113 |
+
arg_seqset.append([s[::-1], ss[::-1]])
|
114 |
+
|
115 |
+
return arg_seqset
|
116 |
+
|
117 |
+
def augment_apis(apta, prot, ys):
|
118 |
+
aug_apta = []
|
119 |
+
aug_prot = []
|
120 |
+
aug_y = []
|
121 |
+
for a, p, y in zip(apta, prot, ys):
|
122 |
+
aug_apta.append(a)
|
123 |
+
aug_prot.append(p)
|
124 |
+
aug_y.append(y)
|
125 |
+
|
126 |
+
aug_apta.append(a[::-1])
|
127 |
+
aug_prot.append(p)
|
128 |
+
aug_y.append(y)
|
129 |
+
|
130 |
+
aug_apta.append(a)
|
131 |
+
aug_prot.append(p[::-1])
|
132 |
+
aug_y.append(y)
|
133 |
+
|
134 |
+
aug_apta.append(a[::-1])
|
135 |
+
aug_prot.append(p[::-1])
|
136 |
+
aug_y.append(y)
|
137 |
+
|
138 |
+
return np.array(aug_apta), np.array(aug_prot), np.array(aug_y)
|
139 |
+
|
140 |
+
def generate_3d_mask(batch1, batch2, heads):
|
141 |
+
# Ensure the batches are tensors
|
142 |
+
batch1 = torch.tensor(batch1, dtype=torch.bool)
|
143 |
+
batch2 = torch.tensor(batch2, dtype=torch.bool)
|
144 |
+
|
145 |
+
# Validate that the batches have the same length
|
146 |
+
if batch1.size(0) != batch2.size(0):
|
147 |
+
raise ValueError("The batches must have the same number of vectors")
|
148 |
+
|
149 |
+
# Generate the 3D mask for each pair of vectors
|
150 |
+
out_mask = []
|
151 |
+
masks = torch.stack([torch.ger(vec1, vec2) for vec1, vec2 in zip(batch1, batch2)])
|
152 |
+
for j in range(masks.shape[0]):
|
153 |
+
out_mask.append(torch.stack([masks[j] for i in range(heads)]))
|
154 |
+
# out_mask = torch.tensor(out_mask, dtype=bool)
|
155 |
+
out_mask = torch.cat(out_mask)
|
156 |
+
|
157 |
+
# Replace False with -inf and True with 0
|
158 |
+
out_mask = out_mask.float() # Convert to float to allow -inf
|
159 |
+
out_mask[out_mask == 0] = -1e9
|
160 |
+
out_mask[out_mask == 1] = 0
|
161 |
+
|
162 |
+
return out_mask
|
163 |
+
|
164 |
+
class CAN(nn.Module):
|
165 |
+
def __init__(self, hidden_dim, num_heads, group_size, aggregation):
|
166 |
+
super(CAN, self).__init__()
|
167 |
+
self.aggregation = aggregation
|
168 |
+
self.group_size = group_size
|
169 |
+
self.hidden_dim = hidden_dim
|
170 |
+
self.num_heads = num_heads
|
171 |
+
self.head_dim = hidden_dim // num_heads
|
172 |
+
|
173 |
+
# Protein weights
|
174 |
+
self.prot_query = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
175 |
+
self.prot_key = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
176 |
+
self.prot_val = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
177 |
+
|
178 |
+
# Aptamer weights
|
179 |
+
self.apta_query = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
180 |
+
self.apta_key = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
181 |
+
self.apta_val = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
182 |
+
|
183 |
+
# linear
|
184 |
+
self.lp = nn.Linear(hidden_dim, hidden_dim)
|
185 |
+
|
186 |
+
def mask_logits(self, logits, mask_row, mask_col, inf=1e6):
|
187 |
+
N, L1, L2, H = logits.shape
|
188 |
+
mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H)
|
189 |
+
mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H)
|
190 |
+
|
191 |
+
# Ignore all padding tokens across both embeddings
|
192 |
+
mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col)
|
193 |
+
|
194 |
+
# Set logit to -1e6 if masked
|
195 |
+
logits = torch.where(mask_pair, logits, logits - inf)
|
196 |
+
alpha = torch.softmax(logits, dim=2)
|
197 |
+
mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1)
|
198 |
+
alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
|
199 |
+
return alpha
|
200 |
+
|
201 |
+
def rearrange_heads(self, x, n_heads, n_ch):
|
202 |
+
# rearrange embedding for MHA
|
203 |
+
s = list(x.size())[:-1] + [n_heads, n_ch]
|
204 |
+
return x.view(*s)
|
205 |
+
|
206 |
+
def grouped_embeddings(self, x, mask, group_size):
|
207 |
+
N, L, D = x.shape
|
208 |
+
groups = L // group_size
|
209 |
+
# Average embeddings within each group
|
210 |
+
x_grouped = x.view(N, groups, group_size, D).mean(dim=2)
|
211 |
+
# Ignore groups without any non-padding tokens
|
212 |
+
mask_grouped = mask.view(N, groups, group_size).any(dim=2)
|
213 |
+
return x_grouped, mask_grouped
|
214 |
+
|
215 |
+
def forward(self, protein, aptamer, mask_prot, mask_apta):
|
216 |
+
# Group embeddings before applying multi-head attention
|
217 |
+
protein_grouped, mask_prot_grouped = self.grouped_embeddings(protein, mask_prot, self.group_size)
|
218 |
+
apta_grouped, mask_apta_grouped = self.grouped_embeddings(aptamer, mask_apta, self.group_size)
|
219 |
+
|
220 |
+
# Compute queries, keys, values for both protein and aptamer after grouping
|
221 |
+
query_prot = self.rearrange_heads(self.prot_query(protein_grouped), self.num_heads, self.head_dim)
|
222 |
+
key_prot = self.rearrange_heads(self.prot_key(protein_grouped), self.num_heads, self.head_dim)
|
223 |
+
value_prot = self.rearrange_heads(self.prot_val(protein_grouped), self.num_heads, self.head_dim)
|
224 |
+
|
225 |
+
query_apta = self.rearrange_heads(self.apta_query(apta_grouped), self.num_heads, self.head_dim)
|
226 |
+
key_apta = self.rearrange_heads(self.apta_key(apta_grouped), self.num_heads, self.head_dim)
|
227 |
+
value_apta = self.rearrange_heads(self.apta_val(apta_grouped), self.num_heads, self.head_dim)
|
228 |
+
|
229 |
+
# Compute attention scores
|
230 |
+
logits_pp = torch.einsum('blhd, bkhd->blkh', query_prot, key_prot)
|
231 |
+
logits_pa = torch.einsum('blhd, bkhd->blkh', query_prot, key_apta)
|
232 |
+
logits_ap = torch.einsum('blhd, bkhd->blkh', query_apta, key_prot)
|
233 |
+
logits_aa = torch.einsum('blhd, bkhd->blkh', query_apta, key_apta)
|
234 |
+
|
235 |
+
ml_pp = self.mask_logits(logits_pp, mask_prot_grouped, mask_prot_grouped)
|
236 |
+
ml_pa = self.mask_logits(logits_pa, mask_prot_grouped, mask_apta_grouped)
|
237 |
+
ml_ap = self.mask_logits(logits_ap, mask_apta_grouped, mask_prot_grouped)
|
238 |
+
ml_aa = self.mask_logits(logits_aa, mask_apta_grouped, mask_apta_grouped)
|
239 |
+
|
240 |
+
# Combine heads, combine self-attended and cross-attended representations (via avg)
|
241 |
+
prot_embedding = (torch.einsum('blkh, bkhd->blhd', ml_pp, value_prot).flatten(-2) +
|
242 |
+
torch.einsum('blkh, bkhd->blhd', ml_pa, value_apta).flatten(-2)) / 2
|
243 |
+
apta_embedding = (torch.einsum('blkh, bkhd->blhd', ml_ap, value_prot).flatten(-2) +
|
244 |
+
torch.einsum('blkh, bkhd->blhd', ml_aa, value_apta).flatten(-2)) / 2
|
245 |
+
|
246 |
+
prot_embedding += protein
|
247 |
+
apta_embedding += aptamer
|
248 |
+
|
249 |
+
# Aggregate token representations
|
250 |
+
if self.aggregation == "cls":
|
251 |
+
prot_embed = prot_embedding[:, 0] # query : [batch_size, hidden]
|
252 |
+
apta_embed = apta_embedding[:, 0] # query : [batch_size, hidden]
|
253 |
+
elif self.aggregation == "mean_all_tok":
|
254 |
+
prot_embed = prot_embedding.mean(1) # query : [batch_size, hidden]
|
255 |
+
apta_embed = apta_embedding.mean(1) # query : [batch_size, hidden]
|
256 |
+
elif self.aggregation == "mean":
|
257 |
+
prot_embed = (prot_embedding * mask_prot_grouped.unsqueeze(-1)).sum(1) / mask_prot_grouped.sum(-1).unsqueeze(-1)
|
258 |
+
apta_embed = (apta_embedding * mask_apta_grouped.unsqueeze(-1)).sum(1) / mask_apta_grouped.sum(-1).unsqueeze(-1)
|
259 |
+
else:
|
260 |
+
raise NotImplementedError()
|
261 |
+
|
262 |
+
embed = torch.cat([prot_embed, apta_embed], dim=1)
|
263 |
+
|
264 |
+
return embed, ml_pa, ml_pp, ml_aa
|