Spaces:
Running
Running
File size: 10,412 Bytes
2cb716b acbea0e 2cb716b 6e812c0 c7a9dfe 2cb716b 6e812c0 acbea0e 6e812c0 af1f413 ab62ff3 2cb716b ab62ff3 0136a5b ab62ff3 2cb716b ab62ff3 2cb716b ab62ff3 0136a5b 2cb716b ab62ff3 2cb716b ab62ff3 0136a5b 2cb716b ab62ff3 0136a5b 2cb716b 6e812c0 acbea0e 6e812c0 c7a9dfe 6e812c0 2cb716b 0136a5b c7a9dfe 6e812c0 c7a9dfe 6e812c0 2cb716b 0136a5b 6e812c0 c7a9dfe 6e812c0 0136a5b 6e812c0 c7a9dfe 6e812c0 c7a9dfe 6e812c0 acbea0e c7a9dfe acbea0e 2cb716b 6e812c0 c7a9dfe 6e812c0 2cb716b 0136a5b 2cb716b 0136a5b 2cb716b 0136a5b 2cb716b 44387c3 2cb716b 0136a5b 2cb716b 44387c3 0136a5b 2cb716b 0136a5b ab62ff3 c7a9dfe ab62ff3 6e812c0 40a124e 6e812c0 40a124e 6e812c0 40a124e 6e812c0 ab62ff3 6e812c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from openai import OpenAI
import anthropic
from together import Together
import cohere
import json
import re
import os
import requests
from prompts import (
JUDGE_SYSTEM_PROMPT,
PROMETHEUS_PROMPT,
PROMETHEUS_PROMPT_WITH_REFERENCE,
)
# Initialize clients
anthropic_client = anthropic.Anthropic()
openai_client = OpenAI()
together_client = Together()
hf_api_key = os.getenv("HF_API_KEY")
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
huggingface_client = OpenAI(
base_url="https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud/v1/",
api_key=hf_api_key
)
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from OpenAI API"""
try:
response = openai_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_completion_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message.content
except Exception as e:
return f"Error with OpenAI model {model_name}: {str(e)}"
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Anthropic API"""
try:
response = anthropic_client.messages.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
)
return response.content[0].text
except Exception as e:
return f"Error with Anthropic model {model_name}: {str(e)}"
def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Together API"""
try:
response = together_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_tokens=max_tokens,
temperature=temperature,
stream=False,
)
return response.choices[0].message.content
except Exception as e:
return f"Error with Together model {model_name}: {str(e)}"
def get_hf_response(model_name, prompt, max_tokens=500):
"""Get response from Hugging Face model"""
try:
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {hf_api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"return_full_text": False
}
}
response = requests.post(
"https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
headers=headers,
json=payload
)
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error with Hugging Face model {model_name}: {str(e)}"
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Cohere API"""
try:
response = cohere_client.chat(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract the text from the content items
content_items = response.message.content
if isinstance(content_items, list):
# Get the text from the first content item
return content_items[0].text
return str(content_items) # Fallback if it's not a list
except Exception as e:
return f"Error with Cohere model {model_name}: {str(e)}"
def get_model_response(
model_name,
model_info,
prompt_data,
use_reference=False,
max_tokens=500,
temperature=0
):
"""Get response from appropriate API based on model organization"""
if not model_info:
return "Model not found or unsupported."
api_model = model_info["api_model"]
organization = model_info["organization"]
# Determine if model is Prometheus
is_prometheus = (organization == "Prometheus")
# For non-Prometheus models, use the Judge system prompt
system_prompt = None if is_prometheus else JUDGE_SYSTEM_PROMPT
# Select the appropriate base prompt
if use_reference:
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE
else:
base_prompt = PROMETHEUS_PROMPT
# For non-Prometheus models, replace the specific instruction
if not is_prometheus:
base_prompt = base_prompt.replace(
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
)
try:
# Format the prompt with the provided data, only using available keys
final_prompt = base_prompt.format(
human_input=prompt_data['human_input'],
ai_response=prompt_data['ai_response'],
ground_truth_input=prompt_data.get('ground_truth_input', ''),
eval_criteria=prompt_data['eval_criteria'],
score1_desc=prompt_data['score1_desc'],
score2_desc=prompt_data['score2_desc'],
score3_desc=prompt_data['score3_desc'],
score4_desc=prompt_data['score4_desc'],
score5_desc=prompt_data['score5_desc']
)
except KeyError as e:
return f"Error formatting prompt: Missing required field {str(e)}"
try:
if organization == "OpenAI":
return get_openai_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
elif organization == "Anthropic":
return get_anthropic_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
elif organization == "Prometheus":
return get_hf_response(
api_model, final_prompt, max_tokens
)
elif organization == "Cohere":
return get_cohere_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
else:
# All other organizations use Together API
return get_together_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
except Exception as e:
return f"Error with {organization} model {model_name}: {str(e)}"
def parse_model_response(response):
try:
# Debug print
print(f"Raw model response: {response}")
# First try to parse the entire response as JSON
try:
data = json.loads(response)
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
except json.JSONDecodeError:
# If that fails (typically for smaller models), try to find JSON within the response
json_match = re.search(r"{.*}", response, re.DOTALL)
if json_match:
data = json.loads(json_match.group(0))
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
else:
return "Error", f"Invalid response format returned - here is the raw model response: {response}"
except Exception as e:
# Debug print for error case
print(f"Failed to parse response: {str(e)}")
return "Error", f"Failed to parse response: {response}"
def prometheus_parse_model_response(output):
try:
print(f"Raw model response: {output}")
output = output.strip()
# Remove "Feedback:" prefix if present (case insensitive)
output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
# New pattern to match [RESULT] X at the beginning
begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
if begin_match:
score = int(begin_match.group(1))
feedback = begin_match.group(2).strip()
return str(score), feedback
# Existing patterns for end-of-string results...
pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# If no match, try to match "... Score: X"
pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# Pattern to handle [Score X] at the end
pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
match = re.search(pattern, output, re.DOTALL)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# Final fallback attempt
pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
match = re.search(pattern, output)
if match:
score = int(match.group(1))
feedback = output[:match.start()].rstrip()
# Remove any trailing brackets from feedback
feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
return str(score), feedback
return "Error", f"Failed to parse response: {output}"
except Exception as e:
print(f"Failed to parse response: {str(e)}")
return "Error", f"Exception during parsing: {str(e)}" |