nikravan commited on
Commit
2ae46d7
·
verified ·
1 Parent(s): 64c191d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -1
app.py CHANGED
@@ -1,3 +1,121 @@
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- gr.load("models/AIDC-AI/Marco-o1").launch()
 
1
+ import os
2
+ import json
3
+ import subprocess
4
+ from threading import Thread
5
+
6
+ import torch
7
+ import spaces
8
  import gradio as gr
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
10
+
11
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
+
13
+ MODEL_ID = "models/AIDC-AI/Marco-o1"
14
+ CHAT_TEMPLATE = "ChatML"
15
+ MODEL_NAME = MODEL_ID.split("/")[-1]
16
+ CONTEXT_LENGTH = 16000
17
+
18
+ # Estableciendo valores directamente para las variables
19
+ COLOR = "blue" # Color predeterminado de la interfaz
20
+ EMOJI = "🤖" # Emoji predeterminado para el modelo
21
+ DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks." # Descripción predeterminada
22
+
23
+
24
+
25
+ @spaces.GPU()
26
+ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
27
+ # Format history with a given chat template
28
+ if CHAT_TEMPLATE == "Auto":
29
+ stop_tokens = [tokenizer.eos_token_id]
30
+ instruction = system_prompt + "\n\n"
31
+ for user, assistant in history:
32
+ instruction += f"User: {user}\nAssistant: {assistant}\n"
33
+ instruction += f"User: {message}\nAssistant:"
34
+ elif CHAT_TEMPLATE == "ChatML":
35
+ stop_tokens = ["<|endoftext|>", "<|im_end|>"]
36
+ instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
37
+ for user, assistant in history:
38
+ instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
39
+ instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
40
+ elif CHAT_TEMPLATE == "Mistral Instruct":
41
+ stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
42
+ instruction = f'<s>[INST] {system_prompt}\n'
43
+ for user, assistant in history:
44
+ instruction += f'{user} [/INST] {assistant}</s>[INST]'
45
+ instruction += f' {message} [/INST]'
46
+ else:
47
+ raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
48
+ print(instruction)
49
+
50
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
51
+ enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
52
+ input_ids, attention_mask = enc.input_ids, enc.attention_mask
53
+
54
+ if input_ids.shape[1] > CONTEXT_LENGTH:
55
+ input_ids = input_ids[:, -CONTEXT_LENGTH:]
56
+ attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
57
+
58
+ generate_kwargs = dict(
59
+ input_ids=input_ids.to(device),
60
+ attention_mask=attention_mask.to(device),
61
+ streamer=streamer,
62
+ do_sample=True,
63
+ temperature=temperature,
64
+ max_new_tokens=max_new_tokens,
65
+ top_k=top_k,
66
+ repetition_penalty=repetition_penalty,
67
+ top_p=top_p
68
+ )
69
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
70
+ t.start()
71
+ outputs = []
72
+ for new_token in streamer:
73
+ outputs.append(new_token)
74
+ if new_token in stop_tokens:
75
+ break
76
+ yield "".join(outputs)
77
+
78
+
79
+ # Load model
80
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
81
+ quantization_config = BitsAndBytesConfig(
82
+ load_in_4bit=True,
83
+ bnb_4bit_compute_dtype=torch.bfloat16
84
+ )
85
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
86
+ model = AutoModelForCausalLM.from_pretrained(
87
+ MODEL_ID,
88
+ device_map="auto",
89
+ quantization_config=quantization_config,
90
+ attn_implementation="flash_attention_2",
91
+ )
92
+
93
+ # Create Gradio interface
94
+ gr.ChatInterface(
95
+ predict,
96
+ title=EMOJI + " " + MODEL_NAME,
97
+ description=DESCRIPTION,
98
+ examples=[
99
+ ["Can you solve the equation 2x + 3 = 11 for x in Python?"],
100
+ ["Write a Java program that checks if a number is even or odd."],
101
+ ["How can I reverse a string in JavaScript?"],
102
+ ["Create a C++ function to find the factorial of a number."],
103
+ ["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."],
104
+ ["How do I implement a binary search algorithm in C?"],
105
+ ["Write a Ruby script to read a file and count the number of lines in it."],
106
+ ["Create a Swift class to represent a bank account with deposit and withdrawal methods."],
107
+ ["How do I find the maximum element in an array using Kotlin?"],
108
+ ["Write a Rust program to generate the Fibonacci sequence up to the 10th number."]
109
+ ],
110
+ additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
111
+ additional_inputs=[
112
+ gr.Textbox("You are a code assistant.", label="System prompt"),
113
+ gr.Slider(0, 1, 0.3, label="Temperature"),
114
+ gr.Slider(128, 4096, 1024, label="Max new tokens"),
115
+ gr.Slider(1, 80, 40, label="Top K sampling"),
116
+ gr.Slider(0, 2, 1.1, label="Repetition penalty"),
117
+ gr.Slider(0, 1, 0.95, label="Top P sampling"),
118
+ ],
119
+ theme=gr.themes.Soft(primary_hue=COLOR),
120
+ ).queue().launch()
121