Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
import torch | |
import torch.nn as nn | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.models import ( | |
AutoencoderKL, | |
ImageProjection, | |
T2IAdapter, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import ( | |
StableDiffusionXLPipelineOutput, | |
) | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( | |
StableDiffusionXLPipeline, | |
rescale_noise_cfg, | |
retrieve_timesteps, | |
) | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from ..loaders import CustomAdapterMixin | |
from ..models.attention_processor import ( | |
DecoupledMVRowSelfAttnProcessor2_0, | |
set_unet_2d_condition_attn_processor, | |
) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def retrieve_latents( | |
encoder_output: torch.Tensor, | |
generator: Optional[torch.Generator] = None, | |
sample_mode: str = "sample", | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class MVAdapterI2MVSDXLPipeline(StableDiffusionXLPipeline, CustomAdapterMixin): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
text_encoder_2: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
tokenizer_2: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
feature_extractor: CLIPImageProcessor = None, | |
force_zeros_for_empty_prompt: bool = True, | |
add_watermarker: Optional[bool] = None, | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt, | |
add_watermarker=add_watermarker, | |
) | |
self.control_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
do_convert_rgb=True, | |
do_normalize=False, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.prepare_latents | |
def prepare_image_latents( | |
self, | |
image, | |
timestep, | |
batch_size, | |
num_images_per_prompt, | |
dtype, | |
device, | |
generator=None, | |
add_noise=True, | |
): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
latents_mean = latents_std = None | |
if ( | |
hasattr(self.vae.config, "latents_mean") | |
and self.vae.config.latents_mean is not None | |
): | |
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) | |
if ( | |
hasattr(self.vae.config, "latents_std") | |
and self.vae.config.latents_std is not None | |
): | |
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) | |
# Offload text encoder if `enable_model_cpu_offload` was enabled | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.text_encoder_2.to("cpu") | |
torch.cuda.empty_cache() | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
image = image.float() | |
self.vae.to(dtype=torch.float32) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: | |
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) | |
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " | |
) | |
init_latents = [ | |
retrieve_latents( | |
self.vae.encode(image[i : i + 1]), generator=generator[i] | |
) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = retrieve_latents( | |
self.vae.encode(image), generator=generator | |
) | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype) | |
init_latents = init_latents.to(dtype) | |
if latents_mean is not None and latents_std is not None: | |
latents_mean = latents_mean.to(device=device, dtype=dtype) | |
latents_std = latents_std.to(device=device, dtype=dtype) | |
init_latents = ( | |
(init_latents - latents_mean) | |
* self.vae.config.scaling_factor | |
/ latents_std | |
) | |
else: | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] == 0 | |
): | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat( | |
[init_latents] * additional_image_per_prompt, dim=0 | |
) | |
elif ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] != 0 | |
): | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
if add_noise: | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
return latents | |
def prepare_control_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
num_empty_images=0, # for concat in batch like ImageDream | |
): | |
assert hasattr( | |
self, "control_image_processor" | |
), "control_image_processor is not initialized" | |
image = self.control_image_processor.preprocess( | |
image, height=height, width=width | |
).to(dtype=torch.float32) | |
if num_empty_images > 0: | |
image = torch.cat( | |
[image, torch.zeros_like(image[:num_empty_images])], dim=0 | |
) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt # always 1 for control image | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance: | |
image = torch.cat([image] * 2) | |
return image | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
# NEW | |
mv_scale: float = 1.0, | |
# Camera or geometry condition | |
control_image: Optional[PipelineImageInput] = None, | |
control_conditioning_scale: Optional[float] = 1.0, | |
control_conditioning_factor: float = 1.0, | |
# Image condition | |
reference_image: Optional[PipelineImageInput] = None, | |
reference_conditioning_scale: Optional[float] = 1.0, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a target image resolution. It should be as same | |
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = denoising_end | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) | |
if self.cross_attention_kwargs is not None | |
else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = self._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat( | |
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# Preprocess reference image | |
reference_image = self.image_processor.preprocess(reference_image) | |
reference_latents = self.prepare_image_latents( | |
reference_image, | |
timesteps[:1].repeat(batch_size * num_images_per_prompt), # no use | |
batch_size, | |
1, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
add_noise=False, | |
) | |
with torch.no_grad(): | |
ref_timesteps = torch.zeros_like(timesteps[0]) | |
ref_hidden_states = {} | |
self.unet( | |
reference_latents, | |
ref_timesteps, | |
encoder_hidden_states=prompt_embeds[-1:], | |
added_cond_kwargs={ | |
"text_embeds": add_text_embeds[-1:], | |
"time_ids": add_time_ids[-1:], | |
}, | |
cross_attention_kwargs={ | |
"cache_hidden_states": ref_hidden_states, | |
"use_mv": False, | |
"use_ref": False, | |
}, | |
return_dict=False, | |
) | |
ref_hidden_states = { | |
k: v.repeat_interleave(num_images_per_prompt, dim=0) | |
for k, v in ref_hidden_states.items() | |
} | |
if self.do_classifier_free_guidance: | |
ref_hidden_states = { | |
k: torch.cat([torch.zeros_like(v), v], dim=0) | |
for k, v in ref_hidden_states.items() | |
} | |
cross_attention_kwargs = { | |
"mv_scale": mv_scale, | |
"ref_hidden_states": {k: v.clone() for k, v in ref_hidden_states.items()}, | |
"ref_scale": reference_conditioning_scale, | |
**(self.cross_attention_kwargs or {}), | |
} | |
# Preprocess control image | |
control_image_feature = self.prepare_control_image( | |
image=control_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=1, # NOTE: always 1 for control images | |
device=device, | |
dtype=latents.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
) | |
control_image_feature = control_image_feature.to( | |
device=device, dtype=latents.dtype | |
) | |
adapter_state = self.cond_encoder(control_image_feature) | |
for i, state in enumerate(adapter_state): | |
adapter_state[i] = state * control_conditioning_scale | |
# 8. Denoising loop | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
# 8.1 Apply denoising_end | |
if ( | |
self.denoising_end is not None | |
and isinstance(self.denoising_end, float) | |
and self.denoising_end > 0 | |
and self.denoising_end < 1 | |
): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len( | |
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
) | |
timesteps = timesteps[:num_inference_steps] | |
# 9. Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
batch_size * num_images_per_prompt | |
) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) | |
if self.do_classifier_free_guidance | |
else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds, | |
"time_ids": add_time_ids, | |
} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
added_cond_kwargs["image_embeds"] = image_embeds | |
if i < int(num_inference_steps * control_conditioning_factor): | |
down_intrablock_additional_residuals = [ | |
state.clone() for state in adapter_state | |
] | |
else: | |
down_intrablock_additional_residuals = None | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_intrablock_additional_residuals=down_intrablock_additional_residuals, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg( | |
noise_pred, | |
noise_pred_text, | |
guidance_rescale=self.guidance_rescale, | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop( | |
"negative_prompt_embeds", negative_prompt_embeds | |
) | |
add_text_embeds = callback_outputs.pop( | |
"add_text_embeds", add_text_embeds | |
) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
negative_add_time_ids = callback_outputs.pop( | |
"negative_add_time_ids", negative_add_time_ids | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = ( | |
self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
) | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to( | |
next(iter(self.vae.post_quant_conv.parameters())).dtype | |
) | |
elif latents.dtype != self.vae.dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
self.vae = self.vae.to(latents.dtype) | |
# unscale/denormalize the latents | |
# denormalize with the mean and std if available and not None | |
has_latents_mean = ( | |
hasattr(self.vae.config, "latents_mean") | |
and self.vae.config.latents_mean is not None | |
) | |
has_latents_std = ( | |
hasattr(self.vae.config, "latents_std") | |
and self.vae.config.latents_std is not None | |
) | |
if has_latents_mean and has_latents_std: | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, 4, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = ( | |
torch.tensor(self.vae.config.latents_std) | |
.view(1, 4, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents = ( | |
latents * latents_std / self.vae.config.scaling_factor | |
+ latents_mean | |
) | |
else: | |
latents = latents / self.vae.config.scaling_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
### NEW: adapters ### | |
def _init_custom_adapter( | |
self, | |
# Multi-view adapter | |
num_views: int, | |
self_attn_processor: Any = DecoupledMVRowSelfAttnProcessor2_0, | |
# Condition encoder | |
cond_in_channels: int = 6, | |
# For training | |
copy_attn_weights: bool = True, | |
zero_init_module_keys: List[str] = [], | |
): | |
# Condition encoder | |
self.cond_encoder = T2IAdapter( | |
in_channels=cond_in_channels, | |
channels=(320, 640, 1280, 1280), | |
num_res_blocks=2, | |
downscale_factor=16, | |
adapter_type="full_adapter_xl", | |
) | |
# set custom attn processor for multi-view attention and image cross-attention | |
self.unet: UNet2DConditionModel | |
set_unet_2d_condition_attn_processor( | |
self.unet, | |
set_self_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor( | |
query_dim=hs, | |
inner_dim=hs, | |
num_views=num_views, | |
name=name, | |
use_mv=True, | |
use_ref=True, | |
), | |
) | |
# copy decoupled attention weights from original unet | |
if copy_attn_weights: | |
state_dict = self.unet.state_dict() | |
for key in state_dict.keys(): | |
if "_mv" in key: | |
compatible_key = key.replace("_mv", "").replace("processor.", "") | |
elif "_ref" in key: | |
compatible_key = key.replace("_ref", "").replace("processor.", "") | |
else: | |
compatible_key = key | |
is_zero_init_key = any([k in key for k in zero_init_module_keys]) | |
if is_zero_init_key: | |
state_dict[key] = torch.zeros_like(state_dict[compatible_key]) | |
else: | |
state_dict[key] = state_dict[compatible_key].clone() | |
self.unet.load_state_dict(state_dict) | |
def _load_custom_adapter(self, state_dict): | |
self.unet.load_state_dict(state_dict, strict=False) | |
self.cond_encoder.load_state_dict(state_dict, strict=False) | |
def _save_custom_adapter( | |
self, | |
include_keys: Optional[List[str]] = None, | |
exclude_keys: Optional[List[str]] = None, | |
): | |
def include_fn(k): | |
is_included = False | |
if include_keys is not None: | |
is_included = is_included or any([key in k for key in include_keys]) | |
if exclude_keys is not None: | |
is_included = is_included and not any( | |
[key in k for key in exclude_keys] | |
) | |
return is_included | |
state_dict = {k: v for k, v in self.unet.state_dict().items() if include_fn(k)} | |
state_dict.update(self.cond_encoder.state_dict()) | |
return state_dict | |