Ashoka74's picture
Upload 25 files
fb5e185 verified
import math
from typing import List, Optional, Union
import numpy as np
import torch
from PIL import Image
def tensor_to_image(
data: Union[Image.Image, torch.Tensor, np.ndarray],
batched: bool = False,
format: str = "HWC",
) -> Union[Image.Image, List[Image.Image]]:
if isinstance(data, Image.Image):
return data
if isinstance(data, torch.Tensor):
data = data.detach().cpu().numpy()
if data.dtype == np.float32 or data.dtype == np.float16:
data = (data * 255).astype(np.uint8)
elif data.dtype == np.bool_:
data = data.astype(np.uint8) * 255
assert data.dtype == np.uint8
if format == "CHW":
if batched and data.ndim == 4:
data = data.transpose((0, 2, 3, 1))
elif not batched and data.ndim == 3:
data = data.transpose((1, 2, 0))
if batched:
return [Image.fromarray(d) for d in data]
return Image.fromarray(data)
def largest_factor_near_sqrt(n: int) -> int:
"""
Finds the largest factor of n that is closest to the square root of n.
Args:
n (int): The integer for which to find the largest factor near its square root.
Returns:
int: The largest factor of n that is closest to the square root of n.
"""
sqrt_n = int(math.sqrt(n)) # Get the integer part of the square root
# First, check if the square root itself is a factor
if sqrt_n * sqrt_n == n:
return sqrt_n
# Otherwise, find the largest factor by iterating from sqrt_n downwards
for i in range(sqrt_n, 0, -1):
if n % i == 0:
return i
# If n is 1, return 1
return 1
def make_image_grid(
images: List[Image.Image],
rows: Optional[int] = None,
cols: Optional[int] = None,
resize: Optional[int] = None,
) -> Image.Image:
"""
Prepares a single grid of images. Useful for visualization purposes.
"""
if rows is None and cols is not None:
assert len(images) % cols == 0
rows = len(images) // cols
elif cols is None and rows is not None:
assert len(images) % rows == 0
cols = len(images) // rows
elif rows is None and cols is None:
rows = largest_factor_near_sqrt(len(images))
cols = len(images) // rows
assert len(images) == rows * cols
if resize is not None:
images = [img.resize((resize, resize)) for img in images]
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(images):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid