Ndif_No_Code / app.py
AryaWu's picture
Update app.py
1bda4fe verified
raw
history blame
12.7 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import io
from PIL import Image
import torch
import torch.nn.functional as F
from nnsight import LanguageModel
from typing import List
import pandas as pd
# Set up the API key for nnsight
from nnsight import CONFIG
import os
api_key = os.getenv('NNSIGHT_API_KEY')
CONFIG.set_default_api_key(api_key)
access_token = os.environ['HUGGING_FACE_HUB_TOKEN']
# Load the Language Model
llama = LanguageModel("meta-llama/Meta-Llama-3.1-8B", token=access_token)
#placeholder for reset
prompts_with_probs = pd.DataFrame(
{
"prompt": [''],
"layer": [0],
"results": [''],
"probs": [0],
"expected": [''],
})
prompts_with_ranks = pd.DataFrame(
{
"prompt": [''],
"layer": [0],
"results": [''],
"ranks": [0],
"expected": [''],
})
def run_lens(model,PROMPT):
logits_lens_token_result_by_layer = []
logits_lens_probs_by_layer = []
logits_lens_ranks_by_layer = []
input_ids = model.tokenizer.encode(PROMPT)
with model.trace(input_ids, remote=True) as runner:
for layer_ix,layer in enumerate(model.model.layers):
hidden_state = layer.output[0][0]
logits_lens_normed_last_token = model.model.norm(hidden_state)
logits_lens_token_distribution = model.lm_head(logits_lens_normed_last_token)
logits_lens_last_token_logits = logits_lens_token_distribution[-1:]
logits_lens_probs = F.softmax(logits_lens_last_token_logits, dim=1).save()
logits_lens_probs_by_layer.append(logits_lens_probs)
logits_lens_next_token = torch.argmax(logits_lens_probs, dim=1).save()
logits_lens_token_result_by_layer.append(logits_lens_next_token)
tokens_out = llama.lm_head.output.argmax(dim=-1).save()
expected_token = tokens_out[0][-1].save()
# logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().numpy() for probs in logits_lens_probs_by_layer])
logits_lens_all_probs = np.concatenate([probs[:, expected_token].cpu().detach().to(torch.float32).numpy() for probs in logits_lens_probs_by_layer])
#get the rank of the expected token from each layer's distribution
for layer_probs in logits_lens_probs_by_layer:
# Sort the probabilities in descending order and find the rank of the expected token
sorted_probs, sorted_indices = torch.sort(layer_probs, descending=True)
# Find the rank of the expected token (1-based rank)
expected_token_rank = (sorted_indices == expected_token).nonzero(as_tuple=True)[1].item() + 1
logits_lens_ranks_by_layer.append(expected_token_rank)
actual_output = llama.tokenizer.decode(expected_token.item())
logits_lens_results = [model.tokenizer.decode(next_token.item()) for next_token in logits_lens_token_result_by_layer]
return logits_lens_results, logits_lens_all_probs, actual_output,logits_lens_ranks_by_layer
def process_file(prompts_data,file_path):
"""Read uploaded file and return list of prompts."""
prompts = []
if file_path is None:
return prompts
if file_path.endswith('.csv'):
# Process CSV file
df = pd.read_csv(file_path)
if 'Prompt' in df.columns:
prompts = df[['Prompt']].dropna().values.tolist()
# Read the file as text and split into lines (one prompt per line)
else:
with open(file_path, 'r') as file:
prompts = [[line] for line in file.read().splitlines()]
for prompt in prompts_data:
if prompt==['']:
continue
else:
prompts.append(prompt)
return prompts
def plot_prob(prompts_with_probs):
plt.figure(figsize=(10, 6))
# Iterate over each prompt and plot its probabilities
for prompt in prompts_with_probs['prompt'].unique():
# Filter the DataFrame for the current prompt
prompt_data = prompts_with_probs[prompts_with_probs['prompt'] == prompt]
# Plot probabilities for this prompt
plt.plot(prompt_data['layer'], prompt_data['probs'], marker='x', label=prompt)
# Annotate each point with the corresponding result
for layer, prob, result in zip(prompt_data['layer'], prompt_data['probs'], prompt_data['results']):
plt.text(layer, prob, result, fontsize=8)
# Add labels and title
plt.xlabel('Layer Number')
plt.ylabel('Probability of Expected Token')
plt.title('Prob of expected token across layers\n(annotated with actual decoded output at each layer)')
plt.grid(True)
plt.ylim(0.0, 1.0)
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure to free memory
return img
def plot_rank(prompts_with_ranks):
plt.figure(figsize=(10, 6))
# Iterate over each prompt and plot its ranks
for prompt in prompts_with_ranks['prompt'].unique():
# Filter the DataFrame for the current prompt
prompt_data = prompts_with_ranks[prompts_with_ranks['prompt'] == prompt]
# Plot ranks for this prompt
plt.plot(prompt_data['layer'], prompt_data['ranks'], marker='x', label=prompt)
# Annotate each point with the corresponding result
for layer, rank, result in zip(prompt_data['layer'], prompt_data['ranks'], prompt_data['results']):
plt.text(layer, rank,result, ha='right', va='bottom', fontsize=8)
# Add labels and title
plt.xlabel('Layer Number')
plt.ylabel('Rank of Expected Token')
plt.title('Rank of expected token across layers\n(annotated with decoded output at each layer)')
plt.grid(True)
plt.ylim(bottom=0) # Adjust if needed, depending on your rank values
plt.legend(title='Prompts', bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=1)
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure to free memory
return img
def plot_prob_mean(prompts_with_probs):
# Calculate mean probabilities and variance
summary_stats = prompts_with_probs.groupby("prompt")["probs"].agg(
mean_prob="mean",
variance="var"
).reset_index()
# Set up the bar plot
plt.figure(figsize=(10, 6))
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_prob'],
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
capsize=5, color='skyblue')
# Add labels and title
plt.xlabel('Prompt')
plt.ylabel('Mean Probability')
plt.title('Mean Probability of Expected Token')
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y')
plt.ylim(0, 1)
# Annotate the mean and variance on the bars
for bar, mean, var in zip(bars, summary_stats['mean_prob'], summary_stats['variance']):
yval = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
ha='center', va='bottom', fontsize=8, color='black')
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure to free memory
return img
def plot_rank_mean(prompts_with_ranks):
# Calculate mean ranks and variance
summary_stats = prompts_with_ranks.groupby("prompt")["ranks"].agg(
mean_rank="mean",
variance="var"
).reset_index()
# Set up the bar plot
plt.figure(figsize=(10, 6))
bars = plt.bar(summary_stats['prompt'], summary_stats['mean_rank'],
yerr=summary_stats['variance']**0.5, # Error bars are the standard deviation
capsize=5, color='salmon')
# Add labels and title
plt.xlabel('Prompt')
plt.ylabel('Mean Rank')
plt.title('Mean Rank of Expected Token')
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y')
# Annotate the mean and variance on the bars
for bar, mean, var in zip(bars, summary_stats['mean_rank'], summary_stats['variance']):
yval = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2, yval, f'Mean: {mean:.2f}\nVar: {var:.2f}',
ha='center', va='bottom', fontsize=8, color='black')
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight') # Use bbox_inches to avoid cutting off labels
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure to free memory
return img
def submit_prompts(prompts_data):
# Initialize lists to accumulate results
all_prompts = []
all_results = []
all_probs = []
all_expected = []
all_layers = []
all_ranks = []
# Iterate over each prompt
for prompt in prompts_data:
# If a prompt is an empty string, skip it
prompt = prompt[0]
if not prompt:
continue
# Run the lens model on the prompt
lens_output = run_lens(llama, prompt)
# Accumulate results for each layer
for layer_idx in range(len(lens_output[1])):
all_prompts.append(prompt)
all_results.append(lens_output[0][layer_idx])
all_probs.append(float(lens_output[1][layer_idx]))
all_expected.append(lens_output[2])
all_layers.append(int(layer_idx))
all_ranks.append(int(lens_output[3][layer_idx]))
# Create DataFrame from accumulated results
prompts_with_probs = pd.DataFrame(
{
"prompt": all_prompts,
"layer": all_layers,
"results": all_results,
"probs": all_probs,
"expected": all_expected,
})
prompts_with_ranks = pd.DataFrame(
{
"prompt": all_prompts,
"layer": all_layers,
"results": all_results,
"ranks": all_ranks,
"expected": all_expected,
})
return plot_prob(prompts_with_probs), plot_rank(prompts_with_ranks),plot_prob_mean(prompts_with_probs),plot_rank_mean(prompts_with_ranks)
def clear_all(prompts):
prompts=[['']]
# prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
prompt_file = None
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
return prompts_data,prompt_file,plot_prob(prompts_with_probs),plot_rank(prompts_with_ranks),plot_prob_mean(prompts_with_probs),plot_rank_mean(prompts_with_ranks)
def gradio_interface():
with gr.Blocks(theme="gradio/monochrome") as demo:
prompts=[['']]
with gr.Row():
with gr.Column(scale=3):
prompts_data = gr.Dataframe(headers=["Prompt"], row_count=5, col_count=1, value= prompts, type="array", interactive=True)
with gr.Column(scale=1):
prompt_file=gr.File(type="filepath", label="Upload a File with Prompts")
prompt_file.upload(process_file, inputs=[prompts_data,prompt_file], outputs=[prompts_data])
# Define the outputs
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
with gr.Row():
prob_visualization = gr.Image(value=plot_prob(prompts_with_probs), type="pil",label=" ")
rank_visualization = gr.Image(value=plot_rank(prompts_with_ranks), type="pil",label=" ")
with gr.Row():
prob_mean_visualization = gr.Image(value=plot_prob_mean(prompts_with_probs), type="pil",label=" ")
rank_mean_visualization = gr.Image(value=plot_rank_mean(prompts_with_ranks), type="pil",label=" ")
clear_btn.click(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization,prob_mean_visualization,rank_mean_visualization])
submit_btn.click(submit_prompts, inputs=[prompts_data], outputs=[prob_visualization,rank_visualization,prob_mean_visualization,rank_mean_visualization])#
prompt_file.clear(clear_all, inputs=[prompts_data], outputs=[prompts_data,prompt_file,prob_visualization,rank_visualization,prob_mean_visualization,rank_mean_visualization])
demo.launch()
gradio_interface()