Spaces:
Sleeping
Sleeping
File size: 14,972 Bytes
6672974 8229af0 4e717cf 372f297 13cb3ce 302f20e eff32bf 04c7187 1a9af2e ac5f3b8 131bf04 2f9196a 024905c 866b10e 04c7187 302f20e 405f281 8a5a456 26987c4 405f281 f59e95f 302f20e 1cd414e 26987c4 1cd414e f59e95f bc435a1 302f20e bc435a1 8a5a456 28471f6 1cd414e 920ece4 e9f68f0 13cb3ce 04c7187 1a9af2e 04c7187 1a9af2e 04c7187 1a9af2e 04c7187 302f20e 5c187de 5bccb70 3e709a9 656c364 5bccb70 19b5412 5bccb70 98eda10 5bccb70 3e709a9 19b5412 b8e6b50 8229af0 b8e6b50 ac5f3b8 302f20e 2f9196a 11d7771 19b5412 2f9196a 19b5412 5bccb70 19b5412 2f9196a 024905c 19b5412 024905c 19b5412 024905c 2f9196a 5bccb70 866b10e 5bccb70 866b10e 5bccb70 302f20e 5bccb70 302f20e 8f75876 302f20e 656c364 8f75876 1a9af2e ac5f3b8 8f75876 5bccb70 866b10e 5bccb70 302f20e 2f9196a 61f93a2 5bccb70 00c9e6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "caching_allocator"
import gradio as gr
import numpy as np
from models import make_inpainting
import utils
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
from transformers import pipeline
import torch
import random
import io
import base64
import json
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
from diffusers import StableDiffusionUpscalePipeline
from diffusers import LDMSuperResolutionPipeline
import cv2
import onnxruntime
from split_image import split
def removeFurniture(input_img1,
input_img2,
positive_prompt,
negative_prompt,
num_of_images,
resolution
):
print("removeFurniture")
HEIGHT = resolution
WIDTH = resolution
input_img1 = input_img1.resize((resolution, resolution))
input_img2 = input_img2.resize((resolution, resolution))
canvas_mask = np.array(input_img2)
mask = utils.get_mask(canvas_mask)
print(input_img1, mask, positive_prompt, negative_prompt)
retList= make_inpainting(positive_prompt=positive_prompt,
image=input_img1,
mask_image=mask,
negative_prompt=negative_prompt,
num_of_images=num_of_images,
resolution=resolution
)
# add the rest up to 10
while (len(retList)<10):
retList.append(None)
return retList
def imageToString(img):
output = io.BytesIO()
img.save(output, format="png")
return output.getvalue()
def segmentation(img):
print("segmentation")
# semantic_segmentation = pipeline("image-segmentation", "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
pipe = pipeline("image-segmentation", "facebook/maskformer-swin-large-ade")
results = pipe(img)
for p in results:
p['mask'] = utils.image_to_byte_array(p['mask'])
p['mask'] = base64.b64encode(p['mask']).decode("utf-8")
#print(results)
return json.dumps(results)
def upscale1(image, prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
print("upscale1", device, image, prompt)
# image.thumbnail((512, 512))
# print("resize",image)
torch.backends.cuda.matmul.allow_tf32 = True
pipe = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True)
# pipe = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_xformers_memory_efficient_attention(attention_op=xformers.ops.MemoryEfficientAttentionFlashAttentionOp)
# Workaround for not accepting attention shape using VAE for Flash Attention
pipe.vae.enable_xformers_memory_efficient_attention()
ret = pipe(prompt=prompt,
image=image,
num_inference_steps=10,
guidance_scale=0)
print("ret",ret)
upscaled_image = ret.images[0]
print("up",upscaled_image)
return upscaled_image
def upscale2(image, prompt):
print("upscale2",image,prompt)
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device",device)
pipe = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
pipe.enable_xformers_memory_efficient_attention(attention_op=xformers.ops.MemoryEfficientAttentionFlashAttentionOp)
# Workaround for not accepting attention shape using VAE for Flash Attention
pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
upscaled_image = pipe(image, num_inference_steps=10, eta=1).images[0]
return upscaled_image
def convert_pil_to_cv2(image):
# pil_image = image.convert("RGB")
open_cv_image = np.array(image)
# RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def inference(model_path: str, img_array: np.array) -> np.array:
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
ort_session = onnxruntime.InferenceSession(model_path, options)
ort_inputs = {ort_session.get_inputs()[0].name: img_array}
ort_outs = ort_session.run(None, ort_inputs)
return ort_outs[0]
def post_process(img: np.array) -> np.array:
# 1, C, H, W -> C, H, W
img = np.squeeze(img)
# C, H, W -> H, W, C
img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
return img
def pre_process(img: np.array) -> np.array:
# H, W, C -> C, H, W
img = np.transpose(img[:, :, 0:3], (2, 0, 1))
# C, H, W -> 1, C, H, W
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def upscale3(image):
print("upscale3",image)
model_path = f"up_models/modelx4.ort"
img = convert_pil_to_cv2(image)
# if img.ndim == 2:
# print("upscale3","img.ndim == 2")
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# if img.shape[2] == 4:
# print("upscale3","img.shape[2] == 4")
# alpha = img[:, :, 3] # GRAY
# alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
# alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
# alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
# img = img[:, :, 0:3] # BGR
# image_output = post_process(inference(model_path, pre_process(img))) # BGR
# image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
# image_output[:, :, 3] = alpha_output
# print("upscale3","img.shape[2] == 3")
image_output = post_process(inference(model_path, pre_process(img))) # BGR
return image_output
def split_image(im, rows, cols, should_square, should_quiet=False):
im_width, im_height = im.size
row_width = int(im_width / cols)
row_height = int(im_height / rows)
name = "image"
ext = ".png"
name = os.path.basename(name)
images = []
if should_square:
min_dimension = min(im_width, im_height)
max_dimension = max(im_width, im_height)
if not should_quiet:
print("Resizing image to a square...")
print("Determining background color...")
bg_color = split.determine_bg_color(im)
if not should_quiet:
print("Background color is... " + str(bg_color))
im_r = Image.new("RGBA" if ext == "png" else "RGB",
(max_dimension, max_dimension), bg_color)
offset = int((max_dimension - min_dimension) / 2)
if im_width > im_height:
im_r.paste(im, (0, offset))
else:
im_r.paste(im, (offset, 0))
im = im_r
row_width = int(max_dimension / cols)
row_height = int(max_dimension / rows)
n = 0
for i in range(0, rows):
for j in range(0, cols):
box = (j * row_width, i * row_height, j * row_width +
row_width, i * row_height + row_height)
outp = im.crop(box)
outp_path = name + "_" + str(n) + ext
if not should_quiet:
print("Exporting image tile: " + outp_path)
images.append(outp)
n += 1
return [img for img in images]
def upscale_image(img, rows, cols, seed, prompt, negative_prompt, xformers, cpu_offload, attention_slicing, enable_custom_sliders=False, guidance=7, iterations=50):
model_id = "stabilityai/stable-diffusion-x4-upscaler"
try:
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
except:
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16, local_files_only=True)
pipeline = pipeline.to("cuda")
if xformers:
pipeline.enable_xformers_memory_efficient_attention()
else:
pipeline.disable_xformers_memory_efficient_attention()
if cpu_offload:
try:
pipeline.enable_sequential_cpu_offload()
except:
pass
if attention_slicing:
pipeline.enable_attention_slicing()
else:
pipeline.disable_attention_slicing()
img = Image.fromarray(img)
# load model and scheduler
if seed==-1:
generator = torch.manual_seed(random.randint(0, 9999999))
else:
generator = torch.manual_seed(seed)
original_width, original_height = img.size
max_dimension = max(original_width, original_height)
tiles = split_image(img, rows, cols, True, False)
ups_tiles = []
i = 0
for x in tiles:
i=i+1
if enable_custom_sliders:
ups_tile = pipeline(prompt=prompt,negative_prompt=negative_prompt,guidance_scale=guidance, num_inference_steps=iterations, image=x.convert("RGB"),generator=generator).images[0]
else:
ups_tile = pipeline(prompt=prompt,negative_prompt=negative_prompt, image=x.convert("RGB"),generator=generator).images[0]
ups_tiles.append(ups_tile)
# Determine the size of the merged upscaled image
total_width = 0
total_height = 0
side = 0
for ups_tile in ups_tiles:
side = ups_tile.width
break
for x in tiles:
tsize = x.width
break
ups_times = abs(side/tsize)
new_size = (max_dimension * ups_times, max_dimension * ups_times)
total_width = cols*side
total_height = rows*side
# Create a blank image with the calculated size
merged_image = Image.new("RGB", (total_width, total_height))
# Paste each upscaled tile into the blank image
current_width = 0
current_height = 0
maximum_width = cols*side
for ups_tile in ups_tiles:
merged_image.paste(ups_tile, (current_width, current_height))
current_width += ups_tile.width
if current_width>=maximum_width:
current_width = 0
current_height = current_height+side
# Using the center of the image as pivot, crop the image to the original dimension times four
crop_left = (new_size[0] - original_width * ups_times) // 2
crop_upper = (new_size[1] - original_height * ups_times) // 2
crop_right = crop_left + original_width * ups_times
crop_lower = crop_upper + original_height * ups_times
final_img = merged_image.crop((crop_left, crop_upper, crop_right, crop_lower))
# The resulting image should be identical to the original image in proportions / aspect ratio, with no loss of elements.
# Save the merged image
return final_img
def upscale( image, prompt, negative_prompt, rows, guidance, iterations, xformers_input, cpu_offload_input, attention_slicing_input):
print("upscale", image, prompt, negative_prompt, rows, guidance, iterations, xformers_input, cpu_offload_input, attention_slicing_input)
# return upscale1(image, prompt)
return upscale_image(image,
rows=rows,cols=rows,
seed=-1,
prompt=prompt,
guidance=guidance,
negative_prompt=negative_prompt,
xformers=xformers_input,
cpu_offload=cpu_offload_input,
attention_slicing=attention_slicing_input,
iterations=iterations)
modes = {
'1': '1',
'img2img': 'Image to Image',
'inpaint': 'Inpainting',
'upscale4x': 'Upscale 4x',
}
with gr.Blocks() as app:
gr.HTML(
f"""
Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
</div>
"""
)
with gr.Row():
with gr.Column():
gr.Button("FurnituRemove").click(removeFurniture,
inputs=[gr.Image(label="img", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Textbox(label="positive_prompt",value="empty room"),
gr.Textbox(label="negative_prompt",value=""),
gr.Number(label="num_of_images",value=2),
gr.Number(label="resolution",value=512)
],
outputs=[
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image()])
with gr.Column():
gr.Button("Segmentation").click(segmentation, inputs=gr.Image(type="pil"), outputs=gr.JSON())
with gr.Column():
gr.Button("Upscale").click(
upscale,
inputs=[
gr.Image(label="Source Image to upscale"),
gr.Textbox(label="prompt",value="empty room"),
gr.Textbox(label="negative prompt",value="jpeg artifacts, lowres, bad quality, watermark, text"),
gr.Number(value=2, label="Tile grid dimension amount (number of rows and columns) - X by X "),
gr.Slider(2, 15, 7, step=1, label='Guidance Scale: How much the AI influences the Upscaling.'),
gr.Slider(10, 100, 10, step=1, label='Number of Iterations'),
gr.Checkbox(value=True,label="Enable Xformers memory efficient attention"),
gr.Checkbox(value=True,label="Enable sequential CPU offload"),
gr.Checkbox(value=True,label="Enable attention slicing")
],
outputs=gr.Image())
# app.queue()
app.launch(debug=True,share=True, height=768)
# UP 1 |