anvilogic-mikehart commited on
Commit
0feeb57
·
1 Parent(s): 237f082

Updating text and styling

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -19,13 +19,17 @@ def load_model():
19
  device='cpu'
20
  model, tokenizer = load_model()
21
 
22
- st.title("FLAN-T5 Typosquatting Detection")
 
 
 
 
23
  st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.")
24
 
25
  prompt_prefix = "Is the first domain a typosquat of the second:"
26
 
27
- potential_typosquat = st.text_input("Potential Typosquatted Domain", value="lonlonsoft.com")
28
- target_domain = st.text_input("Legitimate Domain", value="stiltsoft.net")
29
 
30
  full_prompt = f"{prompt_prefix} {potential_typosquat} {target_domain}"
31
 
@@ -39,7 +43,7 @@ if st.button("Check Typosquatting"):
39
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
 
41
  # Display the result
42
- st.write("**Prediction: **")
43
- st.write(prediction)
44
  else:
45
  st.warning("Please enter both domains to perform the check.")
 
19
  device='cpu'
20
  model, tokenizer = load_model()
21
 
22
+ st.title("Fine tuned FLAN-T5 Typosquatting Detection")
23
+ st.markdown("This streamlit demonstrates our fine tuned model for typosquatting detection. We found that using "
24
+ "SLMs or LLMs and prompt engineering for this task could not achieve the same accuracy as our [cross encoder](https://huggingface.co/Anvilogic/CE-typosquat-detect). "
25
+ "We found that by fine tuning a FLAN-T5 model, we could get the same accuracy as our cross encoder model. "
26
+ "Using an SLM like Flan allows you to output the response (here `true` or `false`) directly into another LM. ")
27
  st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.")
28
 
29
  prompt_prefix = "Is the first domain a typosquat of the second:"
30
 
31
+ potential_typosquat = st.text_input("Potential Typosquatted Domain", value="tiktok-tikto-tibyd-yjdj.com")
32
+ target_domain = st.text_input("Legitimate Domain", value="tiktok.com")
33
 
34
  full_prompt = f"{prompt_prefix} {potential_typosquat} {target_domain}"
35
 
 
43
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
44
 
45
  # Display the result
46
+ st.markdown(f"Is {potential_typosquat} a typosquat of {target_domain}? **{prediction}**")
47
+
48
  else:
49
  st.warning("Please enter both domains to perform the check.")