AI_Application / app.py
Antoniskaraolis's picture
Update app.py
fcdc02f
raw
history blame contribute delete
663 Bytes
import gradio as gr
from transformers import pipeline
import librosa
# Initialize the ASR model
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small")
def transcribe(file_path):
# Load the audio file with librosa
data, samplerate = librosa.load(file_path, sr=None)
# Pass the audio data to the model for transcription without specifying sampling_rate
transcription = asr_model(data)
return transcription["text"]
# Create the Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath", label="Record or Upload Audio"),
outputs="text"
)
# Launch the interface
iface.launch()