AI_Application / app.py
Antoniskaraolis's picture
Update app.py
ee82ddd
raw
history blame
869 Bytes
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import gradio as gr
# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
def transcribe_audio(audio_file):
# Load and process the audio file
audio_input, sampling_rate = processor.load_audio(audio_file.name)
input_features = processor(audio_input, sampling_rate=sampling_rate, return_tensors="pt").input_features
# Generate token ids and decode them to text
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
# Set up Gradio interface
iface = gr.Interface(
fn=transcribe_audio,
inputs="audio",
outputs="text"
)
iface.launch()