Anton commited on
Commit
6b4531a
·
1 Parent(s): aade6d7

Add application file

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
file/.DS_Store ADDED
Binary file (6.15 kB). View file
 
file/lstm_preprocessing.py DELETED
@@ -1,160 +0,0 @@
1
- import re
2
- import string
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- from transformers import BertTokenizer, BertModel
7
- from sklearn.linear_model import LogisticRegression
8
- from nltk.stem import SnowballStemmer
9
-
10
- from nltk.corpus import stopwords
11
- stop_words = set(stopwords.words('english'))
12
- stemmer = SnowballStemmer('russian')
13
- sw = stopwords.words('russian')
14
-
15
- tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
16
-
17
- class LSTMClassifier(nn.Module):
18
- def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
19
- super().__init__()
20
-
21
- self.embedding_dim = embedding_dim
22
- self.hidden_size = hidden_size
23
- self.embedding = embedding
24
-
25
- self.lstm = nn.LSTM(
26
- input_size=self.embedding_dim,
27
- hidden_size=self.hidden_size,
28
- batch_first=True
29
- )
30
- self.clf = nn.Linear(self.hidden_size, 1)
31
-
32
- def forward(self, x):
33
- embeddings = self.embedding(x)
34
- _, (h_n, _) = self.lstm(embeddings)
35
- out = self.clf(h_n.squeeze())
36
- return out
37
-
38
-
39
- def data_preprocessing(text: str) -> str:
40
- """preprocessing string: lowercase, removing html-tags, punctuation,
41
- stopwords, digits
42
-
43
- Args:
44
- text (str): input string for preprocessing
45
-
46
- Returns:
47
- str: preprocessed string
48
- """
49
-
50
- text = text.lower()
51
- text = re.sub('<.*?>', '', text) # html tags
52
- text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
53
- text = ' '.join([word for word in text.split() if word not in stop_words])
54
- text = [word for word in text.split() if not word.isdigit()]
55
- text = ' '.join(text)
56
- return text
57
-
58
- def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
59
- return list(filter(lambda x: x[1] > n, sorted_words))
60
-
61
- def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
62
- """Make left-sided padding for input list of tokens
63
-
64
- Args:
65
- review_int (list): input list of tokens
66
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
67
-
68
- Returns:
69
- np.array: padded sequences
70
- """
71
- features = np.zeros((len(review_int), seq_len), dtype = int)
72
- for i, review in enumerate(review_int):
73
- if len(review) <= seq_len:
74
- zeros = list(np.zeros(seq_len - len(review)))
75
- new = zeros + review
76
- else:
77
- new = review[: seq_len]
78
- features[i, :] = np.array(new)
79
-
80
- return features
81
-
82
- def preprocess_single_string(
83
- input_string: str,
84
- seq_len: int,
85
- vocab_to_int: dict,
86
- ) -> torch.tensor:
87
- """Function for all preprocessing steps on a single string
88
-
89
- Args:
90
- input_string (str): input single string for preprocessing
91
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
92
- vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
93
-
94
- Returns:
95
- list: preprocessed string
96
- """
97
-
98
- preprocessed_string = data_preprocessing(input_string)
99
- result_list = []
100
- for word in preprocessed_string.split():
101
- try:
102
- result_list.append(vocab_to_int[word])
103
- except KeyError as e:
104
- print(f'{e}: not in dictionary!')
105
- result_padded = padding([result_list], seq_len)[0]
106
-
107
- return torch.tensor(result_padded)
108
-
109
- def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
110
- p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
111
- model.eval()
112
- pred = model(p_str)
113
- output = pred.sigmoid().round().item()
114
- if output == 0:
115
- return 'Негативный отзыв'
116
- else:
117
- return 'Позитивный отзыв'
118
-
119
- def predict_single_string(text: str,
120
- model: BertModel,
121
- loaded_model: LogisticRegression
122
- ) -> str:
123
-
124
- with torch.no_grad():
125
- encoded_input = tokenizer(text, return_tensors='pt')
126
- output = model(**encoded_input)
127
- vector = output[0][:,0,:]
128
- pred0 = loaded_model.predict_proba(vector)[0][0]
129
- pred1 = loaded_model.predict_proba(vector)[0][1]
130
- if pred0 > pred1:
131
- return 'Негативный отзыв'
132
- else:
133
- return 'Позитивный отзыв'
134
-
135
- def clean(text):
136
-
137
- text = text.lower()
138
- text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
139
- text = re.sub(r'\d+', ' ', text) # удаляем числа
140
- text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
141
- text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
142
-
143
- return text
144
-
145
- def tokin(text):
146
- text = clean(text)
147
- text = ' '.join([stemmer.stem(word) for word in text.split()])
148
- text = ' '.join([word for word in text.split() if word not in sw])
149
- return text
150
-
151
-
152
- def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
153
-
154
- t = tokin(text).split(' ')
155
- new_text_bow = loaded_vectorizer.transform(t)
156
- predicted_label = loaded_classifier.predict(new_text_bow)
157
- if predicted_label == 0:
158
- return 'Негативный отзыв'
159
- else:
160
- return 'Позитивный отзыв'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
images/.DS_Store ADDED
Binary file (6.15 kB). View file
 
images/lstm_preprocessing.py DELETED
@@ -1,160 +0,0 @@
1
- import re
2
- import string
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- from transformers import BertTokenizer, BertModel
7
- from sklearn.linear_model import LogisticRegression
8
- from nltk.stem import SnowballStemmer
9
-
10
- from nltk.corpus import stopwords
11
- stop_words = set(stopwords.words('english'))
12
- stemmer = SnowballStemmer('russian')
13
- sw = stopwords.words('russian')
14
-
15
- tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
16
-
17
- class LSTMClassifier(nn.Module):
18
- def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
19
- super().__init__()
20
-
21
- self.embedding_dim = embedding_dim
22
- self.hidden_size = hidden_size
23
- self.embedding = embedding
24
-
25
- self.lstm = nn.LSTM(
26
- input_size=self.embedding_dim,
27
- hidden_size=self.hidden_size,
28
- batch_first=True
29
- )
30
- self.clf = nn.Linear(self.hidden_size, 1)
31
-
32
- def forward(self, x):
33
- embeddings = self.embedding(x)
34
- _, (h_n, _) = self.lstm(embeddings)
35
- out = self.clf(h_n.squeeze())
36
- return out
37
-
38
-
39
- def data_preprocessing(text: str) -> str:
40
- """preprocessing string: lowercase, removing html-tags, punctuation,
41
- stopwords, digits
42
-
43
- Args:
44
- text (str): input string for preprocessing
45
-
46
- Returns:
47
- str: preprocessed string
48
- """
49
-
50
- text = text.lower()
51
- text = re.sub('<.*?>', '', text) # html tags
52
- text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
53
- text = ' '.join([word for word in text.split() if word not in stop_words])
54
- text = [word for word in text.split() if not word.isdigit()]
55
- text = ' '.join(text)
56
- return text
57
-
58
- def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
59
- return list(filter(lambda x: x[1] > n, sorted_words))
60
-
61
- def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
62
- """Make left-sided padding for input list of tokens
63
-
64
- Args:
65
- review_int (list): input list of tokens
66
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
67
-
68
- Returns:
69
- np.array: padded sequences
70
- """
71
- features = np.zeros((len(review_int), seq_len), dtype = int)
72
- for i, review in enumerate(review_int):
73
- if len(review) <= seq_len:
74
- zeros = list(np.zeros(seq_len - len(review)))
75
- new = zeros + review
76
- else:
77
- new = review[: seq_len]
78
- features[i, :] = np.array(new)
79
-
80
- return features
81
-
82
- def preprocess_single_string(
83
- input_string: str,
84
- seq_len: int,
85
- vocab_to_int: dict,
86
- ) -> torch.tensor:
87
- """Function for all preprocessing steps on a single string
88
-
89
- Args:
90
- input_string (str): input single string for preprocessing
91
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
92
- vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
93
-
94
- Returns:
95
- list: preprocessed string
96
- """
97
-
98
- preprocessed_string = data_preprocessing(input_string)
99
- result_list = []
100
- for word in preprocessed_string.split():
101
- try:
102
- result_list.append(vocab_to_int[word])
103
- except KeyError as e:
104
- print(f'{e}: not in dictionary!')
105
- result_padded = padding([result_list], seq_len)[0]
106
-
107
- return torch.tensor(result_padded)
108
-
109
- def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
110
- p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
111
- model.eval()
112
- pred = model(p_str)
113
- output = pred.sigmoid().round().item()
114
- if output == 0:
115
- return 'Негативный отзыв'
116
- else:
117
- return 'Позитивный отзыв'
118
-
119
- def predict_single_string(text: str,
120
- model: BertModel,
121
- loaded_model: LogisticRegression
122
- ) -> str:
123
-
124
- with torch.no_grad():
125
- encoded_input = tokenizer(text, return_tensors='pt')
126
- output = model(**encoded_input)
127
- vector = output[0][:,0,:]
128
- pred0 = loaded_model.predict_proba(vector)[0][0]
129
- pred1 = loaded_model.predict_proba(vector)[0][1]
130
- if pred0 > pred1:
131
- return 'Негативный отзыв'
132
- else:
133
- return 'Позитивный отзыв'
134
-
135
- def clean(text):
136
-
137
- text = text.lower()
138
- text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
139
- text = re.sub(r'\d+', ' ', text) # удаляем числа
140
- text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
141
- text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
142
-
143
- return text
144
-
145
- def tokin(text):
146
- text = clean(text)
147
- text = ' '.join([stemmer.stem(word) for word in text.split()])
148
- text = ' '.join([word for word in text.split() if word not in sw])
149
- return text
150
-
151
-
152
- def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
153
-
154
- t = tokin(text).split(' ')
155
- new_text_bow = loaded_vectorizer.transform(t)
156
- predicted_label = loaded_classifier.predict(new_text_bow)
157
- if predicted_label == 0:
158
- return 'Негативный отзыв'
159
- else:
160
- return 'Позитивный отзыв'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/lstm_preprocessing.py DELETED
@@ -1,160 +0,0 @@
1
- import re
2
- import string
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- from transformers import BertTokenizer, BertModel
7
- from sklearn.linear_model import LogisticRegression
8
- from nltk.stem import SnowballStemmer
9
-
10
- from nltk.corpus import stopwords
11
- stop_words = set(stopwords.words('english'))
12
- stemmer = SnowballStemmer('russian')
13
- sw = stopwords.words('russian')
14
-
15
- tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
16
-
17
- class LSTMClassifier(nn.Module):
18
- def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
19
- super().__init__()
20
-
21
- self.embedding_dim = embedding_dim
22
- self.hidden_size = hidden_size
23
- self.embedding = embedding
24
-
25
- self.lstm = nn.LSTM(
26
- input_size=self.embedding_dim,
27
- hidden_size=self.hidden_size,
28
- batch_first=True
29
- )
30
- self.clf = nn.Linear(self.hidden_size, 1)
31
-
32
- def forward(self, x):
33
- embeddings = self.embedding(x)
34
- _, (h_n, _) = self.lstm(embeddings)
35
- out = self.clf(h_n.squeeze())
36
- return out
37
-
38
-
39
- def data_preprocessing(text: str) -> str:
40
- """preprocessing string: lowercase, removing html-tags, punctuation,
41
- stopwords, digits
42
-
43
- Args:
44
- text (str): input string for preprocessing
45
-
46
- Returns:
47
- str: preprocessed string
48
- """
49
-
50
- text = text.lower()
51
- text = re.sub('<.*?>', '', text) # html tags
52
- text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
53
- text = ' '.join([word for word in text.split() if word not in stop_words])
54
- text = [word for word in text.split() if not word.isdigit()]
55
- text = ' '.join(text)
56
- return text
57
-
58
- def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
59
- return list(filter(lambda x: x[1] > n, sorted_words))
60
-
61
- def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
62
- """Make left-sided padding for input list of tokens
63
-
64
- Args:
65
- review_int (list): input list of tokens
66
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
67
-
68
- Returns:
69
- np.array: padded sequences
70
- """
71
- features = np.zeros((len(review_int), seq_len), dtype = int)
72
- for i, review in enumerate(review_int):
73
- if len(review) <= seq_len:
74
- zeros = list(np.zeros(seq_len - len(review)))
75
- new = zeros + review
76
- else:
77
- new = review[: seq_len]
78
- features[i, :] = np.array(new)
79
-
80
- return features
81
-
82
- def preprocess_single_string(
83
- input_string: str,
84
- seq_len: int,
85
- vocab_to_int: dict,
86
- ) -> torch.tensor:
87
- """Function for all preprocessing steps on a single string
88
-
89
- Args:
90
- input_string (str): input single string for preprocessing
91
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
92
- vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
93
-
94
- Returns:
95
- list: preprocessed string
96
- """
97
-
98
- preprocessed_string = data_preprocessing(input_string)
99
- result_list = []
100
- for word in preprocessed_string.split():
101
- try:
102
- result_list.append(vocab_to_int[word])
103
- except KeyError as e:
104
- print(f'{e}: not in dictionary!')
105
- result_padded = padding([result_list], seq_len)[0]
106
-
107
- return torch.tensor(result_padded)
108
-
109
- def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
110
- p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
111
- model.eval()
112
- pred = model(p_str)
113
- output = pred.sigmoid().round().item()
114
- if output == 0:
115
- return 'Негативный отзыв'
116
- else:
117
- return 'Позитивный отзыв'
118
-
119
- def predict_single_string(text: str,
120
- model: BertModel,
121
- loaded_model: LogisticRegression
122
- ) -> str:
123
-
124
- with torch.no_grad():
125
- encoded_input = tokenizer(text, return_tensors='pt')
126
- output = model(**encoded_input)
127
- vector = output[0][:,0,:]
128
- pred0 = loaded_model.predict_proba(vector)[0][0]
129
- pred1 = loaded_model.predict_proba(vector)[0][1]
130
- if pred0 > pred1:
131
- return 'Негативный отзыв'
132
- else:
133
- return 'Позитивный отзыв'
134
-
135
- def clean(text):
136
-
137
- text = text.lower()
138
- text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
139
- text = re.sub(r'\d+', ' ', text) # удаляем числа
140
- text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
141
- text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
142
-
143
- return text
144
-
145
- def tokin(text):
146
- text = clean(text)
147
- text = ' '.join([stemmer.stem(word) for word in text.split()])
148
- text = ' '.join([word for word in text.split() if word not in sw])
149
- return text
150
-
151
-
152
- def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
153
-
154
- t = tokin(text).split(' ')
155
- new_text_bow = loaded_vectorizer.transform(t)
156
- predicted_label = loaded_classifier.predict(new_text_bow)
157
- if predicted_label == 0:
158
- return 'Негативный отзыв'
159
- else:
160
- return 'Позитивный отзыв'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/lstm_preprocessing.py DELETED
@@ -1,160 +0,0 @@
1
- import re
2
- import string
3
- import numpy as np
4
- import torch
5
- import torch.nn as nn
6
- from transformers import BertTokenizer, BertModel
7
- from sklearn.linear_model import LogisticRegression
8
- from nltk.stem import SnowballStemmer
9
-
10
- from nltk.corpus import stopwords
11
- stop_words = set(stopwords.words('english'))
12
- stemmer = SnowballStemmer('russian')
13
- sw = stopwords.words('russian')
14
-
15
- tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
16
-
17
- class LSTMClassifier(nn.Module):
18
- def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
19
- super().__init__()
20
-
21
- self.embedding_dim = embedding_dim
22
- self.hidden_size = hidden_size
23
- self.embedding = embedding
24
-
25
- self.lstm = nn.LSTM(
26
- input_size=self.embedding_dim,
27
- hidden_size=self.hidden_size,
28
- batch_first=True
29
- )
30
- self.clf = nn.Linear(self.hidden_size, 1)
31
-
32
- def forward(self, x):
33
- embeddings = self.embedding(x)
34
- _, (h_n, _) = self.lstm(embeddings)
35
- out = self.clf(h_n.squeeze())
36
- return out
37
-
38
-
39
- def data_preprocessing(text: str) -> str:
40
- """preprocessing string: lowercase, removing html-tags, punctuation,
41
- stopwords, digits
42
-
43
- Args:
44
- text (str): input string for preprocessing
45
-
46
- Returns:
47
- str: preprocessed string
48
- """
49
-
50
- text = text.lower()
51
- text = re.sub('<.*?>', '', text) # html tags
52
- text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
53
- text = ' '.join([word for word in text.split() if word not in stop_words])
54
- text = [word for word in text.split() if not word.isdigit()]
55
- text = ' '.join(text)
56
- return text
57
-
58
- def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
59
- return list(filter(lambda x: x[1] > n, sorted_words))
60
-
61
- def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
62
- """Make left-sided padding for input list of tokens
63
-
64
- Args:
65
- review_int (list): input list of tokens
66
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
67
-
68
- Returns:
69
- np.array: padded sequences
70
- """
71
- features = np.zeros((len(review_int), seq_len), dtype = int)
72
- for i, review in enumerate(review_int):
73
- if len(review) <= seq_len:
74
- zeros = list(np.zeros(seq_len - len(review)))
75
- new = zeros + review
76
- else:
77
- new = review[: seq_len]
78
- features[i, :] = np.array(new)
79
-
80
- return features
81
-
82
- def preprocess_single_string(
83
- input_string: str,
84
- seq_len: int,
85
- vocab_to_int: dict,
86
- ) -> torch.tensor:
87
- """Function for all preprocessing steps on a single string
88
-
89
- Args:
90
- input_string (str): input single string for preprocessing
91
- seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
92
- vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
93
-
94
- Returns:
95
- list: preprocessed string
96
- """
97
-
98
- preprocessed_string = data_preprocessing(input_string)
99
- result_list = []
100
- for word in preprocessed_string.split():
101
- try:
102
- result_list.append(vocab_to_int[word])
103
- except KeyError as e:
104
- print(f'{e}: not in dictionary!')
105
- result_padded = padding([result_list], seq_len)[0]
106
-
107
- return torch.tensor(result_padded)
108
-
109
- def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
110
- p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
111
- model.eval()
112
- pred = model(p_str)
113
- output = pred.sigmoid().round().item()
114
- if output == 0:
115
- return 'Негативный отзыв'
116
- else:
117
- return 'Позитивный отзыв'
118
-
119
- def predict_single_string(text: str,
120
- model: BertModel,
121
- loaded_model: LogisticRegression
122
- ) -> str:
123
-
124
- with torch.no_grad():
125
- encoded_input = tokenizer(text, return_tensors='pt')
126
- output = model(**encoded_input)
127
- vector = output[0][:,0,:]
128
- pred0 = loaded_model.predict_proba(vector)[0][0]
129
- pred1 = loaded_model.predict_proba(vector)[0][1]
130
- if pred0 > pred1:
131
- return 'Негативный отзыв'
132
- else:
133
- return 'Позитивный отзыв'
134
-
135
- def clean(text):
136
-
137
- text = text.lower()
138
- text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
139
- text = re.sub(r'\d+', ' ', text) # удаляем числа
140
- text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
141
- text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
142
-
143
- return text
144
-
145
- def tokin(text):
146
- text = clean(text)
147
- text = ' '.join([stemmer.stem(word) for word in text.split()])
148
- text = ' '.join([word for word in text.split() if word not in sw])
149
- return text
150
-
151
-
152
- def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
153
-
154
- t = tokin(text).split(' ')
155
- new_text_bow = loaded_vectorizer.transform(t)
156
- predicted_label = loaded_classifier.predict(new_text_bow)
157
- if predicted_label == 0:
158
- return 'Негативный отзыв'
159
- else:
160
- return 'Позитивный отзыв'