Ayurveda_Chatbot / h2oai_pipeline.py
AnonymousSub's picture
Duplicate from h2oai/h2ogpt-chatbot
b7bd9ac
import os
from transformers import TextGenerationPipeline
from transformers.pipelines.text_generation import ReturnType
from stopping import get_stopping
from prompter import Prompter, PromptType
class H2OTextGenerationPipeline(TextGenerationPipeline):
def __init__(self, *args, debug=False, chat=False, stream_output=False,
sanitize_bot_response=False,
use_prompter=True, prompter=None,
context='', iinput='',
prompt_type=None, prompt_dict=None,
max_input_tokens=2048 - 256, **kwargs):
"""
HF-like pipeline, but handle instruction prompting and stopping (for some models)
:param args:
:param debug:
:param chat:
:param stream_output:
:param sanitize_bot_response:
:param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
:param prompter: prompter, can pass if have already
:param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in from prompter.py.
If use_prompter, then will make prompter and use it.
:param prompt_dict: dict of get_prompt(, return_dict=True) for prompt_type=custom
:param max_input_tokens:
:param kwargs:
"""
super().__init__(*args, **kwargs)
self.prompt_text = None
self.use_prompter = use_prompter
self.prompt_type = prompt_type
self.prompt_dict = prompt_dict
self.prompter = prompter
self.context = context
self.iinput = iinput
if self.use_prompter:
if self.prompter is not None:
assert self.prompter.prompt_type is not None
else:
self.prompter = Prompter(self.prompt_type, self.prompt_dict, debug=debug, chat=chat,
stream_output=stream_output)
self.human = self.prompter.humanstr
self.bot = self.prompter.botstr
self.can_stop = True
else:
self.prompter = None
self.human = None
self.bot = None
self.can_stop = False
self.sanitize_bot_response = sanitize_bot_response
self.max_input_tokens = max_input_tokens # not for generate, so ok that not kwargs
@staticmethod
def limit_prompt(prompt_text, tokenizer, max_prompt_length=None):
verbose = bool(int(os.getenv('VERBOSE_PIPELINE', '0')))
if hasattr(tokenizer, 'model_max_length'):
# model_max_length only defined for generate.py, not raw use of h2oai_pipeline.py
model_max_length = tokenizer.model_max_length
if max_prompt_length is not None:
model_max_length = min(model_max_length, max_prompt_length)
# cut at some upper likely limit to avoid excessive tokenization etc
# upper bound of 10 chars/token, e.g. special chars sometimes are long
if len(prompt_text) > model_max_length * 10:
len0 = len(prompt_text)
prompt_text = prompt_text[-model_max_length * 10:]
if verbose:
print("Cut of input: %s -> %s" % (len0, len(prompt_text)), flush=True)
else:
# unknown
model_max_length = None
num_prompt_tokens = None
if model_max_length is not None:
# can't wait for "hole" if not plain prompt_type, since would lose prefix like <human>:
# For https://github.com/h2oai/h2ogpt/issues/192
for trial in range(0, 3):
prompt_tokens = tokenizer(prompt_text)['input_ids']
num_prompt_tokens = len(prompt_tokens)
if num_prompt_tokens > model_max_length:
# conservative by using int()
chars_per_token = int(len(prompt_text) / num_prompt_tokens)
# keep tail, where question is if using langchain
prompt_text = prompt_text[-model_max_length * chars_per_token:]
if verbose:
print("reducing %s tokens, assuming average of %s chars/token for %s characters" % (
num_prompt_tokens, chars_per_token, len(prompt_text)), flush=True)
else:
if verbose:
print("using %s tokens with %s chars" % (num_prompt_tokens, len(prompt_text)), flush=True)
break
# Why Below False: don't limit max_new_tokens more, just rely upon stopping to reach limit of model
if False:
# if input prompt is some number of tokens, despite user request, can't have max_new_tokens more
#
assert num_prompt_tokens is not None
if self.prompt_type not in [PromptType.plain.name, PromptType.plain.value]:
# then give room for prompt
fudge = 20
else:
fudge = 0
max_new_tokens = max(0, min(generate_kwargs['max_new_tokens'],
model_max_length - (num_prompt_tokens + fudge)))
if max_new_tokens < generate_kwargs['max_new_tokens']:
if verbose:
print("Reduced max_new_tokens from %s -> %s" % (
generate_kwargs['max_new_tokens'], max_new_tokens))
generate_kwargs['max_new_tokens'] = max_new_tokens
return prompt_text, num_prompt_tokens
def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs):
prompt_text, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt_text, self.tokenizer)
data_point = dict(context=self.context, instruction=prompt_text, input=self.iinput)
if self.prompter is not None:
prompt_text = self.prompter.generate_prompt(data_point)
self.prompt_text = prompt_text
if handle_long_generation is None:
# forces truncation of inputs to avoid critical failure
handle_long_generation = None # disable with new approaches
return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation,
**generate_kwargs)
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
records = super().postprocess(model_outputs, return_type=return_type,
clean_up_tokenization_spaces=clean_up_tokenization_spaces)
for rec in records:
if self.use_prompter:
outputs = rec['generated_text']
outputs = self.prompter.get_response(outputs, prompt=self.prompt_text,
sanitize_bot_response=self.sanitize_bot_response)
elif self.bot and self.human:
outputs = rec['generated_text'].split(self.bot)[1].split(self.human)[0]
else:
outputs = rec['generated_text']
rec['generated_text'] = outputs
print("prompt: %s\noutputs: %s\n\n" % (self.prompt_text, outputs), flush=True)
return records
def _forward(self, model_inputs, **generate_kwargs):
if self.can_stop:
stopping_criteria = get_stopping(self.prompt_type, self.prompt_dict,
self.tokenizer, self.device,
human=self.human, bot=self.bot,
model_max_length=self.tokenizer.model_max_length)
generate_kwargs['stopping_criteria'] = stopping_criteria
# return super()._forward(model_inputs, **generate_kwargs)
return self.__forward(model_inputs, **generate_kwargs)
# FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
# FIXME: https://github.com/h2oai/h2ogpt/issues/172
def __forward(self, model_inputs, **generate_kwargs):
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
# Allow empty prompts
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
prompt_text = model_inputs.pop("prompt_text")
## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
# generate_kwargs = copy.deepcopy(generate_kwargs)
prefix_length = generate_kwargs.pop("prefix_length", 0)
if prefix_length > 0:
has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].max_new_tokens is not None
)
if not has_max_new_tokens:
generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
out_b = generated_sequence.shape[0]
if self.framework == "pt":
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
elif self.framework == "tf":
from transformers import is_tf_available
if is_tf_available():
import tensorflow as tf
generated_sequence = tf.reshape(generated_sequence,
(in_b, out_b // in_b, *generated_sequence.shape[1:]))
else:
raise ValueError("TF not avaialble.")
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}