""" Generate a large batch of image samples from a model and save them as a large numpy array. This can be used to produce samples for FID evaluation. """ import argparse import os import numpy as np import torch as th import torch.distributed as dist from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( NUM_CLASSES, model_and_diffusion_defaults, create_model_and_diffusion, add_dict_to_argparser, args_to_dict, ) def main(): args = create_argparser().parse_args() dist_util.setup_dist() logger.configure() logger.log("creating model and diffusion...") model, diffusion = create_model_and_diffusion( **args_to_dict(args, model_and_diffusion_defaults().keys()) ) model.load_state_dict( dist_util.load_state_dict(args.model_path, map_location="cpu") ) model.to(dist_util.dev()) if args.use_fp16: model.convert_to_fp16() model.eval() logger.log("sampling...") all_images = [] all_labels = [] while len(all_images) * args.batch_size < args.num_samples: model_kwargs = {} if args.class_cond: classes = th.randint( low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev() ) model_kwargs["y"] = classes sample_fn = ( diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop ) sample = sample_fn( model, (args.batch_size, 3, args.image_size, args.image_size), clip_denoised=args.clip_denoised, model_kwargs=model_kwargs, ) sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8) sample = sample.permute(0, 2, 3, 1) sample = sample.contiguous() gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] dist.all_gather(gathered_samples, sample) # gather not supported with NCCL all_images.extend([sample.cpu().numpy() for sample in gathered_samples]) if args.class_cond: gathered_labels = [ th.zeros_like(classes) for _ in range(dist.get_world_size()) ] dist.all_gather(gathered_labels, classes) all_labels.extend([labels.cpu().numpy() for labels in gathered_labels]) logger.log(f"created {len(all_images) * args.batch_size} samples") arr = np.concatenate(all_images, axis=0) arr = arr[: args.num_samples] if args.class_cond: label_arr = np.concatenate(all_labels, axis=0) label_arr = label_arr[: args.num_samples] if dist.get_rank() == 0: shape_str = "x".join([str(x) for x in arr.shape]) out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz") logger.log(f"saving to {out_path}") if args.class_cond: np.savez(out_path, arr, label_arr) else: np.savez(out_path, arr) dist.barrier() logger.log("sampling complete") def create_argparser(): defaults = dict( clip_denoised=True, num_samples=10000, batch_size=16, use_ddim=False, model_path="", ) defaults.update(model_and_diffusion_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": main()