Anonymous-123's picture
Add application file
ec0fdfd
import os, ntpath
import torch
from collections import OrderedDict
from util import util
from . import base_function
from abc import abstractmethod
class BaseModel():
"""This class is an abstract base class for models"""
def __init__(self, opt):
"""Initialize the BaseModel class"""
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.device = torch.device('cuda') if self.gpu_ids else torch.device('cpu')
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
self.loss_names = []
self.model_names = []
self.visual_names = []
self.value_names = []
self.image_paths = []
self.optimizers = []
self.schedulers = []
self.metric = 0 # used for learning rate policy 'plateau'
def name(self):
return 'BaseModel'
@staticmethod
def modify_options(parser, is_train):
"""Add new options and rewrite default values for existing options"""
return parser
@abstractmethod
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps"""
pass
@abstractmethod
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
pass
@abstractmethod
def optimize_parameters(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
pass
def setup(self, opt):
"""Load networks, create schedulers"""
if self.isTrain:
self.schedulers = [base_function.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
if not self.isTrain or opt.continue_train:
load_suffix = '%d' % opt.which_iter if opt.which_iter > 0 else opt.epoch
self.load_networks(load_suffix)
self.print_networks()
def parallelize(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.to(self.device)
if len(self.opt.gpu_ids) > 0:
setattr(self, 'net' + name, torch.nn.parallel.DataParallel(net, self.opt.gpu_ids))
def eval(self):
"""Make models eval mode during test time"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.eval()
def log_imgs(self):
"""visualize the image during the training"""
pass
def test(self):
"""Forward function used in test time"""
with torch.no_grad():
self.forward()
def get_image_paths(self):
""" Return image paths that are used to load current data"""
return self.image_paths
def update_learning_rate(self):
"""Update learning rates for all the networks; called at the end of every epoch"""
for scheduler in self.schedulers:
if self.opt.lr_policy == 'plateau':
scheduler.step(self.metric)
else:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
def get_current_losses(self):
"""Return training loss"""
errors_ret = OrderedDict()
for name in self.loss_names:
if isinstance(name, str):
try:
errors_ret[name] = float(getattr(self, 'loss_' + name))
except:
pass
return errors_ret
def get_current_visuals(self):
"""Return visualization examples"""
visual_ret = OrderedDict()
for name in self.visual_names:
if isinstance(name, str):
value = getattr(self, name)
if isinstance(value, list):
visual_ret[name] = value[-1]
else:
visual_ret[name] = value
return visual_ret
def save_networks(self, epoch, save_path=None):
"""Save all the networks to the disk."""
save_path = save_path if save_path!= None else self.save_dir
for name in self.model_names:
if isinstance(name, str):
filename = '%s_net_%s.pth' % (epoch, name)
path = os.path.join(save_path, filename)
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
torch.save(net.module.cpu().state_dict(), path)
net.cuda(self.gpu_ids[0])
else:
torch.save(net.cpu().state_dict(), path)
def load_networks(self, epoch, save_path=None):
"""Load all the networks from the disk"""
save_path = save_path if save_path != None else self.save_dir
for name in self.model_names:
if isinstance(name, str):
filename = '%s_net_%s.pth' % (epoch, name)
path = os.path.join(save_path, filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
print('loading the model from %s' % path)
try:
state_dict = torch.load(path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
net.load_state_dict(state_dict)
except:
print('Pretrained network %s is unmatched' % name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
net.cuda()
def print_networks(self):
"""Print the total number of parameters in the network and (if verbose) network architecture"""
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def save_results(self, save_data, path=None, data_name='none'):
"""save the training or testing results to disk"""
img_paths = self.get_image_paths()
for i in range(save_data.size(0)):
short_path = ntpath.basename(img_paths[i]) # get image path
name = os.path.splitext(short_path)[0]
img_name = '%s_%s.png' % (name, data_name)
util.mkdir(path)
img_path = os.path.join(path, img_name)
img_numpy = util.tensor2im(save_data[i].unsqueeze(0))
util.save_image(img_numpy, img_path)