Spaces:
Runtime error
Runtime error
""" | |
Train a noised image classifier on ImageNet. | |
""" | |
import argparse | |
import os | |
import blobfile as bf | |
import torch as th | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion.image_datasets import load_data | |
from guided_diffusion.resample import create_named_schedule_sampler | |
from guided_diffusion.script_util import ( | |
add_dict_to_argparser, | |
args_to_dict, | |
classifier_and_diffusion_defaults, | |
create_classifier_and_diffusion, | |
) | |
from guided_diffusion.train_util import parse_resume_step_from_filename, log_loss_dict | |
def main(): | |
args = create_argparser().parse_args() | |
dist_util.setup_dist() | |
logger.configure() | |
logger.log("creating model and diffusion...") | |
model, diffusion = create_classifier_and_diffusion( | |
**args_to_dict(args, classifier_and_diffusion_defaults().keys()) | |
) | |
model.to(dist_util.dev()) | |
if args.noised: | |
schedule_sampler = create_named_schedule_sampler( | |
args.schedule_sampler, diffusion | |
) | |
resume_step = 0 | |
if args.resume_checkpoint: | |
resume_step = parse_resume_step_from_filename(args.resume_checkpoint) | |
if dist.get_rank() == 0: | |
logger.log( | |
f"loading model from checkpoint: {args.resume_checkpoint}... at {resume_step} step" | |
) | |
model.load_state_dict( | |
dist_util.load_state_dict( | |
args.resume_checkpoint, map_location=dist_util.dev() | |
) | |
) | |
# Needed for creating correct EMAs and fp16 parameters. | |
dist_util.sync_params(model.parameters()) | |
mp_trainer = MixedPrecisionTrainer( | |
model=model, use_fp16=args.classifier_use_fp16, initial_lg_loss_scale=16.0 | |
) | |
model = DDP( | |
model, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
) | |
logger.log("creating data loader...") | |
data = load_data( | |
data_dir=args.data_dir, | |
batch_size=args.batch_size, | |
image_size=args.image_size, | |
class_cond=True, | |
random_crop=True, | |
) | |
if args.val_data_dir: | |
val_data = load_data( | |
data_dir=args.val_data_dir, | |
batch_size=args.batch_size, | |
image_size=args.image_size, | |
class_cond=True, | |
) | |
else: | |
val_data = None | |
logger.log(f"creating optimizer...") | |
opt = AdamW(mp_trainer.master_params, lr=args.lr, weight_decay=args.weight_decay) | |
if args.resume_checkpoint: | |
opt_checkpoint = bf.join( | |
bf.dirname(args.resume_checkpoint), f"opt{resume_step:06}.pt" | |
) | |
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") | |
opt.load_state_dict( | |
dist_util.load_state_dict(opt_checkpoint, map_location=dist_util.dev()) | |
) | |
logger.log("training classifier model...") | |
def forward_backward_log(data_loader, prefix="train"): | |
batch, extra = next(data_loader) | |
labels = extra["y"].to(dist_util.dev()) | |
batch = batch.to(dist_util.dev()) | |
# Noisy images | |
if args.noised: | |
t, _ = schedule_sampler.sample(batch.shape[0], dist_util.dev()) | |
batch = diffusion.q_sample(batch, t) | |
else: | |
t = th.zeros(batch.shape[0], dtype=th.long, device=dist_util.dev()) | |
for i, (sub_batch, sub_labels, sub_t) in enumerate( | |
split_microbatches(args.microbatch, batch, labels, t) | |
): | |
logits = model(sub_batch, timesteps=sub_t) | |
loss = F.cross_entropy(logits, sub_labels, reduction="none") | |
losses = {} | |
losses[f"{prefix}_loss"] = loss.detach() | |
losses[f"{prefix}_acc@1"] = compute_top_k( | |
logits, sub_labels, k=1, reduction="none" | |
) | |
losses[f"{prefix}_acc@5"] = compute_top_k( | |
logits, sub_labels, k=5, reduction="none" | |
) | |
log_loss_dict(diffusion, sub_t, losses) | |
del losses | |
loss = loss.mean() | |
if loss.requires_grad: | |
if i == 0: | |
mp_trainer.zero_grad() | |
mp_trainer.backward(loss * len(sub_batch) / len(batch)) | |
for step in range(args.iterations - resume_step): | |
logger.logkv("step", step + resume_step) | |
logger.logkv( | |
"samples", | |
(step + resume_step + 1) * args.batch_size * dist.get_world_size(), | |
) | |
if args.anneal_lr: | |
set_annealed_lr(opt, args.lr, (step + resume_step) / args.iterations) | |
forward_backward_log(data) | |
mp_trainer.optimize(opt) | |
if val_data is not None and not step % args.eval_interval: | |
with th.no_grad(): | |
with model.no_sync(): | |
model.eval() | |
forward_backward_log(val_data, prefix="val") | |
model.train() | |
if not step % args.log_interval: | |
logger.dumpkvs() | |
if ( | |
step | |
and dist.get_rank() == 0 | |
and not (step + resume_step) % args.save_interval | |
): | |
logger.log("saving model...") | |
save_model(mp_trainer, opt, step + resume_step) | |
if dist.get_rank() == 0: | |
logger.log("saving model...") | |
save_model(mp_trainer, opt, step + resume_step) | |
dist.barrier() | |
def set_annealed_lr(opt, base_lr, frac_done): | |
lr = base_lr * (1 - frac_done) | |
for param_group in opt.param_groups: | |
param_group["lr"] = lr | |
def save_model(mp_trainer, opt, step): | |
if dist.get_rank() == 0: | |
th.save( | |
mp_trainer.master_params_to_state_dict(mp_trainer.master_params), | |
os.path.join(logger.get_dir(), f"model{step:06d}.pt"), | |
) | |
th.save(opt.state_dict(), os.path.join(logger.get_dir(), f"opt{step:06d}.pt")) | |
def compute_top_k(logits, labels, k, reduction="mean"): | |
_, top_ks = th.topk(logits, k, dim=-1) | |
if reduction == "mean": | |
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() | |
elif reduction == "none": | |
return (top_ks == labels[:, None]).float().sum(dim=-1) | |
def split_microbatches(microbatch, *args): | |
bs = len(args[0]) | |
if microbatch == -1 or microbatch >= bs: | |
yield tuple(args) | |
else: | |
for i in range(0, bs, microbatch): | |
yield tuple(x[i : i + microbatch] if x is not None else None for x in args) | |
def create_argparser(): | |
defaults = dict( | |
data_dir="", | |
val_data_dir="", | |
noised=True, | |
iterations=150000, | |
lr=3e-4, | |
weight_decay=0.0, | |
anneal_lr=False, | |
batch_size=4, | |
microbatch=-1, | |
schedule_sampler="uniform", | |
resume_checkpoint="", | |
log_interval=10, | |
eval_interval=5, | |
save_interval=10000, | |
) | |
defaults.update(classifier_and_diffusion_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
main() | |