Ankitajadhav commited on
Commit
535f0de
·
verified ·
1 Parent(s): 290b5bf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -10,6 +10,9 @@ from datasets import load_dataset
10
  # from transformers import AutoModelForCausalLM, AutoTokenizer
11
  import gradio as gr
12
  from mistral_inference.model import Transformer
 
 
 
13
 
14
  # Function to clear the cache
15
  def clear_cache(model_name):
@@ -84,9 +87,10 @@ vector_store.populate_vectors(dataset=None)
84
  # load model orca-mini general purpose model
85
  # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
86
  # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
87
-
88
- tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
89
- model = Transformer.from_folder(mistral_models_path)
 
90
 
91
  # Define the chatbot response function
92
  def chatbot_response(user_input):
 
10
  # from transformers import AutoModelForCausalLM, AutoTokenizer
11
  import gradio as gr
12
  from mistral_inference.model import Transformer
13
+ from gpt4all import GPT4All
14
+ from pathlib import Path
15
+
16
 
17
  # Function to clear the cache
18
  def clear_cache(model_name):
 
87
  # load model orca-mini general purpose model
88
  # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
89
  # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
90
+ model_name = 'Meta-Llama-3-8B-Instruct.Q4_0.gguf' # .gguf represents quantized model
91
+ model_path = "gpt4all"
92
+ # add path to download load the model locally, download once and load for subsequent inference
93
+ model = GPT4All(model_name=model_name, model_path=model_path,device="cuda")
94
 
95
  # Define the chatbot response function
96
  def chatbot_response(user_input):