Whats_Cooking / app.py
Ankitajadhav's picture
Update app.py
a097b7b verified
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import chromadb
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
# Initialize the Llama model
llm = Llama(
# model_path=hf_hub_download(
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
# filename="Phi-3-mini-4k-instruct-q4.gguf",
# ),
# model_path=hf_hub_download(
# repo_id="Ankitajadhav/Phi-3-mini-4k-instruct-q4.gguf",
# filename="Phi-3-mini-4k-instruct-q4.gguf",
# ),
model_path=hf_hub_download(
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
),
n_ctx=2048,
n_gpu_layers=50, # Adjust based on your VRAM
)
# Initialize ChromaDB Vector Store
class VectorStore:
def __init__(self, collection_name):
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(name=collection_name)
## entire dataset
# def populate_vectors(self, texts):
# embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
# for text, embedding in zip(texts, embeddings, ids):
# self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
## subsetting
def populate_vectors(self, dataset):
# Select the text columns to concatenate
title = dataset['train']['title_cleaned'][:2000] # Limiting to 2000 examples for the demo
recipe = dataset['train']['recipe_new'][:2000]
allergy = dataset['train']['allergy_type'][:2000]
ingredients = dataset['train']['ingredients_alternatives'][:2000]
# Concatenate the text from both columns
texts = [f"{tit} {rep} {ingr} {alle}" for tit, rep, ingr,alle in zip(title, recipe, ingredients,allergy)]
for i, item in enumerate(texts):
embeddings = self.embedding_model.encode(item).tolist()
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
## Method to populate the vector store with embeddings from a dataset
def search_context(self, query, n_results=1):
query_embedding = self.embedding_model.encode([query]).tolist()
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
return results['documents']
# Example initialization (assuming you've already populated the vector store)
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
vector_store = VectorStore("embedding_vector")
vector_store.populate_vectors(dataset)
def generate_text(message, max_tokens, temperature, top_p):
# Retrieve context from vector store
context_results = vector_store.search_context(message, n_results=1)
context = context_results[0] if context_results else ""
# Create the prompt template
prompt_template = (
f"SYSTEM: You are a recipe generating bot.\n"
f"SYSTEM: {context}\n"
f"USER: {message}\n"
f"ASSISTANT:\n"
)
# Generate text using the language model
output = llm(
prompt_template,
# max_new_tokens=256,
temperature=0.3,
top_p=0.95,
top_k=40,
repeat_penalty=1.1,
max_tokens=600,
# repetition_penalty=1.1
)
# Process the output
input_string = output['choices'][0]['text'].strip()
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
continuous_text = '\n'.join(cleaned_text.split('\n'))
return continuous_text
# Define the Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
],
outputs=gr.Textbox(label="Generated Text"),
title="Chatbot - Your Personal Culinary Advisor: Discover What to Cook Next!",
description="Running LLM with context retrieval from ChromaDB",
examples=[
["I have leftover rice, what can I make out of it?"],
["I just have some milk and chocolate, what dessert can I make?"],
["I am allergic to coconut milk, what can I use instead in a Thai curry?"],
["Can you suggest a vegan breakfast recipe?"],
["How do I make a perfect scrambled egg?"],
["Can you guide me through making a soufflé?"],
],
cache_examples=False,
)
# Define a function to restart the interface
def restart_interface():
# This function can include any logic needed to reset the app's state
return gr.update()
# Add a custom button to restart the interface
with gr.Blocks() as app:
with gr.Row():
demo.render()
gr.Button("Restart Space").click(fn=restart_interface, inputs=[], outputs=[demo])
if __name__ == "__main__":
demo.launch()